We present a 0.3–4.5
- NSF-PAR ID:
- 10475497
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 269
- Issue:
- 2
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 46
- Size(s):
- Article No. 46
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present the first publicly released catalog of sources obtained from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). HETDEX is an integral field spectroscopic survey designed to measure the Hubble expansion parameter and angular diameter distance at 1.88 < z < 3.52 by using the spatial distribution of more than a million Ly α -emitting galaxies over a total target area of 540 deg 2 . The catalog comes from contiguous fiber spectra coverage of 25 deg 2 of sky from 2017 January through 2020 June, where object detection is performed through two complementary detection methods: one designed to search for line emission and the other a search for continuum emission. The HETDEX public release catalog is dominated by emission-line galaxies and includes 51,863 Ly α -emitting galaxy (LAE) identifications and 123,891 [O ii ]-emitting galaxies at z < 0.5. Also included in the catalog are 37,916 stars, 5274 low-redshift ( z < 0.5) galaxies without emission lines, and 4976 active galactic nuclei. The catalog provides sky coordinates, redshifts, line identifications, classification information, line fluxes, [O ii ] and Ly α line luminosities where applicable, and spectra for all identified sources processed by the HETDEX detection pipeline. Extensive testing demonstrates that HETDEX redshifts agree to within Δ z < 0.02, 96.1% of the time to those in external spectroscopic catalogs. We measure the photometric counterpart fraction in deep ancillary Hyper Suprime-Cam imaging and find that only 55.5% of the LAE sample has an r -band continuum counterpart down to a limiting magnitude of r ∼ 26.2 mag (AB) indicating that an LAE search of similar sensitivity to HETDEX with photometric preselection would miss nearly half of the HETDEX LAE catalog sample. Data access and details about the catalog can be found online at http://hetdex.org/ . A copy of the catalogs presented in this work (Version 3.2) is available to download at Zenodo doi: 10.5281/zenodo.7448504 .more » « less
-
Abstract We present the first active galactic nuclei (AGN) catalog of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) observed between 2017 January and 2020 June. HETDEX is an ongoing spectroscopic survey (3500–5500 Å) with no target preselection based on magnitudes, colors or morphologies, enabling us to select AGN based solely on their spectral features. Both luminous quasars and low-luminosity Seyferts are found in our catalog. AGN candidates are selected with at least two significant AGN emission lines, such as the Ly
α and Civ λ 1549 line pair, or with a single broad emission line with FWHM > 1000 km s−1. Each source is further confirmed by visual inspections. This catalog contains 5322 AGN, covering an effective sky coverage of 30.61 deg2. A total of 3733 of these AGN have secure redshifts, and we provide redshift estimates for the remaining 1589 single broad-line AGN with no crossmatched spectral redshifts from the Sloan Digital Sky Survey Data Release 14 of QSOs. The redshift range of the AGN catalog is 0.25 <z < 4.32, with a median ofz = 2.1. The bolometric luminosity range is 109–1014L ☉with a median of 1012L ☉. The medianr -band magnitude of our AGN catalog is 21.6 mag, with 34% havingr > 22.5, and 2.6% reaching the detection limit atr ∼ 26 mag of the deepest imaging surveys we searched. We also provide a composite spectrum of the AGN sample covering 700–4400 Å. -
Abstract We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Ly
α emitting galaxies between 1.88 <z < 3.52, in a 540 deg2area encompassing a comoving volume of 10.9 Gpc3. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra. -
Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.more » « less
-
Abstract In 2022 November, the James Webb Space Telescope (JWST) returned deep near-infrared images of A2744—a powerful lensing cluster capable of magnifying distant, incipient galaxies beyond it. Together with existing Hubble Space Telescope (HST) imaging, this publicly available data set opens a fundamentally new discovery space to understand the remaining mysteries of the formation and evolution of galaxies across cosmic time. In this work, we detect and measure some 60,000 objects across the 49 arcmin2JWST footprint down to a 5
σ limiting magnitude of ∼30 mag in 0.″32 apertures. Photometry is performed using circular apertures on images matched to the point-spread function (PSF) of the reddest NIRCam broad band, F444W, and cleaned of bright cluster galaxies and the related intracluster light. To give an impression of the photometric performance, we measure photometric redshifts and achieve aσ NMAD≈ 0.03 based on known, but relatively small, spectroscopic samples. With this paper, we publicly release our HST and JWST PSF-matched photometric catalog with optimally assigned aperture sizes for easy use, along with single aperture catalogs, photometric redshifts, rest-frame colors, and individual magnification estimates. These catalogs will set the stage for efficient and deep spectroscopic follow up of some of the first JWST-selected samples in summer of 2023.