skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Inquiry Approach to Teaching Sustainable Software Development with Collaborative Version Control
Software development is becoming increasingly ubiquitous in STEM disciplines resulting in the need for education in associated computational skills. To address this need, we designed a "Sustainable Software Development with Collaborative Version Control" workshop in the 2019 Institute for Scientist & Engineer Educators (ISEE) Professional Development Program (PDP). We describe here the development process and following delivery of the workshop. In particular, we explored how to apply an inquiry approach to learning computational skills. By design, PDP activities intertwine content and “cognitive STEM practices,” and teasing apart content and practice is important for STEM education. We encountered challenges with this task because our content — exploring software sustainability with collaborative version control — is much like a practice in itself. We designed our workshop to introduce the critical skill of sustainable software development using collaborative version control systems with an inquiry approach rather than the more typically used, strictly technical approach. We emphasize the authentic, broadly applicable nature of the workshop in which learners jointly design, test, and discuss their own increasingly complex development workflows. The development process for our workshop may be useful for educators who want to introduce software practices to learners from many disparate STEM disciplines that leverage computational methods and require software development to approach research questions.  more » « less
Award ID(s):
1743117
PAR ID:
10475517
Author(s) / Creator(s):
; ;
Editor(s):
Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
Publisher / Repository:
Institute for Scientist and Engineer Educators (ISEE)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    A significant focus of the ISEE Professional Development Program (PDP) is identifying authentic STEM practices, so that educators and scientists can develop and assess these practices as intentionally as they would scientific content knowledge. In addition to the classic inquiry-based learning activities, PDP alumni also find themselves using and teaching these STEM practices in other contexts. Many PDP participants have benefited from recognizing "STEM practices" as its own category of specific skills and knowledge, allowing them to build these practices into their work intentionally, rather than simply expecting these skills to develop naturally as a by-product of learning STEM content. We present four instances where PDP lessons have been put to work by alumni of the program in this manner, either in teaching and mentoring students, performing real-world scientific research, or both. First, we consider two instances of alumni using their PDP training to inform the way they build authentic STEM practices into college classrooms and college mentorship, at the College of St. Scholastica and at UC Santa Cruz. Next, we describe a course-based undergraduate research experience (CURE) in which students learn and employ authentic STEM research practices at the University of Colorado at Boulder. Finally, we present an example of an alumna who has used her identification of widely-applicable STEM practices to broaden her own research horizons at Lawrence Berkeley National Laboratory. 
    more » « less
  2. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    In many organizations (e.g., higher education, non-profits, small companies), individuals are called upon to lead small groups of people to complete one or more tasks both in formal roles and in informal settings. For example, department heads, committee chairs, project leads, and program managers are all roles that require an individual to utilize leadership skills to lead their team to the successful completion of the tasks at hand. However, in many science, technology, engineering, and math (STEM) fields and their associated jobs, training and support in leadership development are often lacking. To meet this need, the Institute for Scientist and Engineer Educators (ISEE) at the University of California - Santa Cruz (UCSC) made supporting and mentoring leadership development a key component of the Professional Development Program (PDP) for graduate students and postdoctoral scholars in STEM, which ran for over 20 years. Building off of the ISEE leadership development model (ISEE 2020), this workshop is designed to give professionals an opportunity to learn about and practice important leadership skills that can be used in their organizations. In this workshop, participants learn to apply three elements of effective leadership that are useful in practice and inclusive of multiple perspectives on leadership. Participants apply actionable leadership practices to their own challenges at work and develop the language to discuss their own leadership skills. Workshop duration: 15 minutes individual reading, 2 hours in-person workshop, 15 minutes follow up. 
    more » « less
  3. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Participants of the Institute for Scientist and Engineer Educators’ (ISEE) Professional Development Program (PDP) work in Design Teams to create inquiry activities that foster student learning of relevant STEM content and practices. These teams implement the inquiry activities in one or more teaching venues (i.e., a context in which Design Team members act as instructors or facilitators with actual learners or students). One such venue is the Akamai Internship Program’s PREP Course. Concurrent with running the PDP, ISEE supported the development of frameworks to help Akamai interns understand the projects they undertake during their internship. Two frameworks were developed: one focused on scientific explanations and the other on engineering solutions. This paper describes how PDP inquiry activities and the ISEE Frameworks come together in a mutually supportive manner during the Akamai PREP Course. This synergy becomes apparent as we examine the sequential placement of PREP sessions whereby the frameworks both push interns to make sense of their experiences with such activities (e.g., revisiting the explanation framework after a science-oriented inquiry) and prepare interns for effective engagement in upcoming inquiry activities (e.g., using the solution framework before an engineering-oriented inquiry). Recommendations include using a similar pairing of inquiry activities and frameworks in other teaching venues. 
    more » « less
  4. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Transitioning from graduate student roles in academia to professional careers in industry and government affords ISEE’s Professional Development Program (PDP) alumni the opportunity to apply lessons and techniques learned at the PDP to new environments with new goals. In mission-focused government roles, PDP alumni apply their expertise in inquiry-style teaching to mentor junior staff and develop projects that meet governmental requirements, while preserving STEM learner identities. Alumni find that the principles of inquiry-style teaching have applicability across professional development spectrums — from mentoring high school interns through training postdoctoral researchers and managing teams of diverse career stages. In industry, where fast-paced corporate goals drive innovation, alumni have found that PDP principles in developing explicit content and practice learning outcomes have helped them develop unique roles within their companies. Additionally, across both industry and government roles, all PDP alumni on this panel report that PDP’s focus on leadership development, effective meeting strategies, and inclusive management practices have readied them for their post-academia careers. 
    more » « less
  5. To address the complex threats to Earth's life-sustaining systems, students need to learn core concepts and practices from various disciplines, including mathematics, civics, science, and, increasingly, computer science (NRC, 2012; United Nations, 2021). Schools must therefore equip students to navigate and integrate these disciplines to tackle real-world problems. Over the past two decades, STEM educators have advocated for an interdisciplinary approach, challenging traditional barriers between subjects and emphasizing contextualized real-world issues (Hoachlander & Yanofsky, 2011; Vasquez et al., 2013; Ortiz-Revilla et al., 2020; Honey et al., 2014; Takeuchi et al., 2020). Despite extensive evidence supporting integrated approaches to STEM education, subject boundaries remain, with disciplines often taught separately and computer science and computational thinking (CS & CT) not consistently included in elementary and middle school curricula. In today's digital age, CS and CT are crucial for a well-rounded education and for addressing sustainability challenges (ESSA, 2015; NGSS Lead States, 2013; NRC, 2012). While there's consensus on the importance of introducing computational concepts and practices to elementary and middle school students, integrating them into existing curricula poses significant challenges, including how to effectively support teachers to deliver inquiry instruction confidently and competently (Ryoo, 2019). Existing frameworks and tools for teaching CS and CT often focus on maintaining fidelity to canonical concepts and formalized taxonomies rather than on practical applications (Grover & Pea, 2013; Kafai et al., 2020; Wilkerson et al., 2020). This focus can lead teachers to learn terminology without fully understanding its relevance or application in different contexts. In response, some researchers suggest using a learning sciences perspective to consider “how the complexity of everyday spaces of learning shapes what counts, and what should be counted, as ‘computational thinking’” (Wilkerson et al., 2020, p. 265). These scholars emphasize the importance of drawing on learners’ everyday experiences and problems to make computational practices more meaningful and contextually relevant for both teachers and their students. Thus, this paper aims to address the following question: How can we design learning experiences for in-service teachers that support (1) their authentic engagement with computational concepts, practices, and tools and (2) more effective integration within classroom contexts? In the limited space of this proposal, we primarily address part 1. 
    more » « less