- Award ID(s):
- 1821884
- PAR ID:
- 10475521
- Editor(s):
- Holme, Thomas
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of Chemical Education
- Volume:
- 100
- Issue:
- 5
- ISSN:
- 0021-9584
- Page Range / eLocation ID:
- 1788 to 1795
- Subject(s) / Keyword(s):
- First-Year Undergraduate, General, Environmental Chemistry, Collaborative, Cooperative Learning, Inquiry-Based, Discovery Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Research Experiences for Undergraduate (REU) programs often introduce students to scientific research and STEM career possibilities. However, the program impact on students and their research skill development is not well understood. In a case study with 10 REU students, the authors used eye-tracking and self-report data to determine student strategies for reading scientific papers and interpreting graphs at the beginning and end of the program. The strategies of REU students and science experts were then compared. The REU students changed their strategies and performed more like experts at posttest. These findings indicate that, during the REU, students acquired expert-like strategies necessary to engage with scientific articles and extract key information from graphs. The study demonstrates that eye-tracking can document skill growth in REU students.more » « less
-
Abstract Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web‐based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (
n = 30) using the unit made significant learning gains based on their pretest to post‐test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in‐unit and post‐unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts. -
Abstract Science education frameworks in the United States have moved strongly in recent years to incorporate more dimensions of learning, including measuring student use of scientific practices employed during scientific inquiry. For instance, the Next Generation Science Standards and related multidimensional frameworks adopted or adapted recently by more than 30 United States include numerous complex science performance skills required of students. This article considers whether valid and reliable evidence can be obtained in online performance tasks to yield an estimate of both student inquiry practices and of the ability of students to explain their understanding of scientific concepts. A data set from a Virtual Performance Assessment (VPA) task,
There's a New Frog in Town , is examined. Delivered through an online system, the VPA task engages students in guided inquiry through problem solving, modeling, and exploration. The VPAs are designed to produce evidence on more than one latent trait in the respondent performance. Results of the case study reported here indicated that maps of student proficiency in scientific inquiry were possible to generate from the VPA data set, using measurement models. Addition of process data through a new hybrid measurement model, mIRT‐Bayes, improved reliability of results. Results indicated overall that virtual performance tasks may be helpful for science assessment, especially if assessment time is short and a goal is to increase the validity and quality of performance measures with authentic and engaging virtual activities. -
Aslam, Muhammad Shahzad (Ed.)The skill of analyzing and interpreting research data is central to the scientific process, yet it is one of the hardest skills for students to master. While instructors can coach students through the analysis of data that they have either generated themselves or obtained from published articles, the burgeoning availability of preprint articles provides a new potential pedagogical tool. We developed a new method in which students use a cognitive apprenticeship model to uncover how experts analyzed a paper and compare the professional’s cognitive approach to their own. Specifically, students first critique research data themselves and then identify changes between the preprint and final versions of the paper that were likely the results of peer review. From this activity, students reported diverse insights into the processes of data presentation, peer review, and scientific publishing. Analysis of preprint articles is therefore a valuable new tool to strengthen students’ information literacy and understanding of the process of science.more » « less
-
In this article, we present an inquiry unit for fourth- and fifth-grade classrooms designed to build students’ understanding of trash pollution, discover its environmental effects, and communicate how people in their community can reduce those effects. It was created as a collaboration between a team of fourth-grade teachers and an ecology research laboratory at a local university. This series of lessons was designed to integrate the use of articles, websites, data charts, and videos into a framework for students to develop scientific research and communication skills, using trash pollution as the anchoring theme. The unit culminates in students using their research to create a public service announcement to report pollution findings and possible solutions that could be shared with other students and the community.more » « less