skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mitigating pseudoreplication and bias in resource selection functions with autocorrelation‐informed weighting
Abstract Resource selection functions (RSFs) are among the most commonly used statistical tools in both basic and applied animal ecology. They are typically parameterized using animal tracking data, and advances in animal tracking technology have led to increasing levels of autocorrelation between locations in such data sets. Because RSFs assume that data are independent and identically distributed, such autocorrelation can cause misleadingly narrow confidence intervals and biased parameter estimates.Data thinning, generalized estimating equations and step selection functions (SSFs) have been suggested as techniques for mitigating the statistical problems posed by autocorrelation, but these approaches have notable limitations that include statistical inefficiency, unclear or arbitrary targets for adequate levels of statistical independence, constraints in input data and (in the case of SSFs) scale‐dependent inference. To remedy these problems, we introduce a method for likelihood weighting of animal locations to mitigate the negative consequences of autocorrelation on RSFs.In this study, we demonstrate that this method weights each observed location in an animal's movement track according to its level of non‐independence, expanding confidence intervals and reducing bias that can arise when there are missing data in the movement track.Ecologists and conservation biologists can use this method to improve the quality of inferences derived from RSFs. We also provide a complete, annotated analytical workflow to help new users apply our method to their own animal tracking data using thectmm Rpackage.  more » « less
Award ID(s):
1915347
PAR ID:
10475576
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
14
Issue:
2
ISSN:
2041-210X
Page Range / eLocation ID:
643 to 654
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounterrateswhile the relationship between individual movement and the spatiallocationsof encounter events in the environment has remained conspicuously understudied.Here, we bridge this gap by introducing a method for describing the long‐term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open‐source software and demonstrate the broad ecological relevance of this distribution.We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation‐based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white‐faced capuchinsCebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizardsTiliqua rugosa,tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location‐specific encounter probability.The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via thectmm Rpackage. 
    more » « less
  2. Abstract Projects focused on movement behaviour and home range are commonplace, but beyond a focus on choosing appropriate research questions, there are no clear guidelines for such studies. Without these guidelines, designing an animal tracking study to produce reliable estimates of space‐use and movement properties (necessary to answer basic movement ecology questions), is often done in an ad hoc manner.We developed ‘movedesign’, a user‐friendly Shiny application, which can be utilized to investigate the precision of three estimates regularly reported in movement and spatial ecology studies: home range area, speed and distance travelled. Conceptually similar to statistical power analysis, this application enables users to assess the degree of estimate precision that may be achieved with a given sampling design; that is, the choices regarding data resolution (sampling interval) and battery life (sampling duration).Leveraging the ‘ctmm’Rpackage, we utilize two methods proven to handle many common biases in animal movement datasets: autocorrelated kernel density estimators (AKDEs) and continuous‐time speed and distance (CTSD) estimators. Longer sampling durations are required to reliably estimate home range areas via the detection of a sufficient number of home range crossings. In contrast, speed and distance estimation requires a sampling interval short enough to ensure that a statistically significant signature of the animal's velocity remains in the data.This application addresses key challenges faced by researchers when designing tracking studies, including the trade‐off between long battery life and high resolution of GPS locations collected by the devices, which may result in a compromise between reliably estimating home range or speed and distance. ‘movedesign’ has broad applications for researchers and decision‐makers, supporting them to focus efforts and resources in achieving the optimal sampling design strategy for their research questions, prioritizing the correct deployment decisions for insightful and reliable outputs, while understanding the trade‐off associated with these choices. 
    more » « less
  3. Abstract Occupancy modelling is a common approach to assess species distribution patterns, while explicitly accounting for false absences in detection–nondetection data. Numerous extensions of the basic single‐species occupancy model exist to model multiple species, spatial autocorrelation and to integrate multiple data types. However, development of specialized and computationally efficient software to incorporate such extensions, especially for large datasets, is scarce or absent.We introduce thespOccupancy Rpackage designed to fit single‐species and multi‐species spatially explicit occupancy models. We fit all models within a Bayesian framework using Pólya‐Gamma data augmentation, which results in fast and efficient inference.spOccupancyprovides functionality for data integration of multiple single‐species detection–nondetection datasets via a joint likelihood framework. The package leverages Nearest Neighbour Gaussian Processes to account for spatial autocorrelation, which enables spatially explicit occupancy modelling for potentially massive datasets (e.g. 1,000s–100,000s of sites).spOccupancyprovides user‐friendly functions for data simulation, model fitting, model validation (by posterior predictive checks), model comparison (using information criteria and k‐fold cross‐validation) and out‐of‐sample prediction. We illustrate the package's functionality via a vignette, simulated data analysis and two bird case studies.ThespOccupancypackage provides a user‐friendly platform to fit a variety of single and multi‐species occupancy models, making it straightforward to address detection biases and spatial autocorrelation in species distribution models even for large datasets. 
    more » « less
  4. Abstract Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities. 
    more » « less
  5. Abstract Many important demographic processes are seasonal, including survival. For many species, mortality risk is significantly higher at certain times of the year than at others, whether because resources are scarce, susceptibility to predators or disease is high, or both. Despite the importance of survival modelling in wildlife sciences, no tools are available to estimate the peak, duration and relative importance of these ‘seasons of mortality’.We presentcyclomort, anrpackage that estimates the timing, duration and intensity of any number of mortality seasons with reliable confidence intervals. The package includes a model selection approach to determine the number of mortality seasons and to test whether seasons of mortality vary across discrete grouping factors.We illustrate the periodic hazard function model and workflow of cyclomort with simulated data. We then estimate mortality seasons of two caribouRangifer taranduspopulations that have strikingly different mortality patterns, including different numbers and timing of mortality peaks, and a marked change in one population over time.Thecyclomortpackage was developed to estimate mortality seasons for wildlife, but the package can model any time‐to‐event processes with a periodic component. 
    more » « less