skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Discovery of Robust Materials for Photocatalytic Energy Conversion
The solar–to–chemical energy conversion of Earth-abundant resources like water or greenhouse gas pollutants like CO2promises an alternate energy source that is clean, renewable, and environmentally friendly. The eventual large-scale application of such photo-based energy conversion devices can be realized through the discovery of novel photocatalytic materials that are efficient, selective, and robust. In the past decade, the Materials Genome Initiative has led to a major leap in the development of materials databases, both computational and experimental. Hundreds of photocatalysts have recently been discovered for various chemical reactions, such as water splitting and carbon dioxide reduction, employing these databases and/or data informatics, machine learning, and high-throughput computational and experimental methods. In this article, we review these data-driven photocatalyst discoveries, emphasizing the methods and techniques developed in the last few years to determine the (photo)electrochemical stability of photocatalysts, leading to the discovery of photocatalysts that remain robust and durable under operational conditions.  more » « less
Award ID(s):
1906030
PAR ID:
10475589
Author(s) / Creator(s):
; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Condensed Matter Physics
Volume:
14
Issue:
1
ISSN:
1947-5454
Page Range / eLocation ID:
237 to 259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed as a viable approach for generating hydrogen, provided that stable and inexpensive photocatalysts with conversion efficiencies over 10% can be discovered, synthesized at scale, and successfully deployed (Pinaud et al. , Energy Environ. Sci. , 2013, 6 , 1983). While a number of first-principles studies have focused on the data-driven discovery of photocatalysts, in the absence of systematic experimental validation, the success rate of these predictions may be limited. We address this problem by developing a screening procedure with co-validation between experiment and theory to expedite the synthesis, characterization, and testing of the computationally predicted, most desirable materials. Starting with 70 150 compounds in the Materials Project database, the proposed protocol yielded 71 candidate photocatalysts, 11 of which were synthesized as single-phase materials. Experiments confirmed hydrogen generation and favorable band alignment for 6 of the 11 compounds, with the most promising ones belonging to the families of alkali and alkaline-earth indates and orthoplumbates. This study shows the accuracy of a nonempirical, Hubbard-corrected density-functional theory method to predict band gaps and band offsets at a fraction of the computational cost of hybrid functionals, and outlines an effective strategy to identify photocatalysts for solar hydrogen generation. 
    more » « less
  2. Abstract Data‐intensive discovery of water‐splitting catalysts can accelerate the development of sustainable energy technologies, such as the photocatalytic and/or electrocatalytic production of renewable hydrogen fuel. Through computational screening, 13 materials were recently predicted as potential water‐splitting photocatalysts: Cu3NbS4, CuYS2, SrCu2O2, CuGaO2, Na3BiO4,Sr2PbO4, LaCuOS, LaCuOSe, Na2TeO4, La4O4Se3, Cu2WS4, BaCu2O2, and CuAlO2. Herein, these materials are synthesized, their bandgaps and band alignments are experimentally determined, and their photoelectrocatalytic hydrogen evolution properties are assessed. Using cyclic voltammetry and chopped illumination experiments, 9 of the 13 materials are experimentally found to have bandgaps and band alignments that straddle the potentials required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as computationally predicted. During photocatalytic testing, 12 of the materials yield a measurable photocurrent. However, only three are found to be active for the HER, with Cu3NbS4, CuYS2, and Cu2WS4producing H2in amounts comparable to bare TiO2; a benchmark photocatalyst. This study provides experimental validation of computational bandgap and band alignment predictions while also successfully identifying active photocatalysts. 
    more » « less
  3. Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic light. In this regard, an astonishing number of recent research articles include claims of highly efficient (photo)catalysts or similar terms about materials with superior or enhanced efficiency for a given reaction without proper experimental support. Consequently, the comparison of the efficiencies of photocatalysts may result as being meaningless, especially when reports are only based on expressions determining (1) a reaction rate per weight of catalyst or its surface area, (2) quantum efficiencies or quantum yields, and (3) turnover frequencies or turnover numbers. Herein, we summarize the standards needed for reporting valuable data in photocatalysis and highlight some common discrepancies found in the literature. This work should inform researchers interested in reporting photocatalysis projects about the correct procedures for collecting experimental data and properly characterizing the materials by providing examples and key supporting literature. 
    more » « less
  4. Abstract The formation and disassociation of excitons play a crucial role in any photovoltaic or photocatalytic application. However, excitonic effects are seldom considered in materials discovery studies due to the monumental computational cost associated with the examination of these properties. Here, we study the excitonic properties of nearly 50 photocatalysts using state-of-the-art Bethe–Salpeter formalism. These ~50 materials were recently recognized as promising photocatalysts for CO2reduction through a data-driven screening of 68,860 materials. Here, we propose three screening criteria based on the optical properties of these materials, taking excitonic effects into account, to further down select six materials. Furthermore, we study the correlation between the exciton binding energies obtained from the Bethe–Salpeter formalism and those obtained from the computationally much less-expensive Wannier–Mott model for these chemically diverse ~50 materials. This work presents a paradigm towards the inclusion of excitonic effects in future materials discovery for solar-energy harvesting applications. 
    more » « less
  5. Cerium oxide (CeO2) photo/electrocatalysts for energy storage and environmental applications have attracted considerable interest because of stable crystal structure, low toxicity/cost, superior chemical stability, stable redox (Ce3+/Ce4+) pairs, abundant oxygen defects, and capablility for intense interaction with other materials. However, the wide bandgap and poor conductivity lower the CeO2photo/electrocatalytic and energy storage performances. To overcome these limitations, various modification strategies (tuning morphology, doping or loading of metal nanoparticles, and heterostructures) have been applied for the improvement of photocatalytic (removal of organic contaminants from water/wastewater and H2production and CO2reduction reactions) efficiency, electrocatalytic (hydrogen/oxygen evolution reactions and CO2reduction reactions), and energy storage performances (supercapacitor) of CeO2‐based materials. Herein, the recent progress of CeO2‐based materials for electro(photo)catalysis and energy storage applications has been discussed. The challenges and possible direction of CeO2‐based materials for electro(photo)catalysis and energy storage applications have been emphasized. Furthermore, this comprehensive review is expected to advance the design of CeO2‐based materials and their applications in electro(photo)catalysis and energy. 
    more » « less