Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conventional symmetries such as , , and , where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous) symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of symmetry, HSF, and a tower of quantum scars, respectively. In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality. Published by the American Physical Society2024
more »
« less
Avoiding symmetry roadblocks and minimizing the measurement overhead of adaptive variational quantum eigensolvers
Quantum simulation of strongly correlated systems is potentially the most feasible useful application of near-term quantum computers. Minimizing quantum computational resources is crucial to achieving this goal. A promising class of algorithms for this purpose consists of variational quantum eigensolvers (VQEs). Among these, problem-tailored versions such as ADAPT-VQE that build variational ansätze step by step from a predefined operator pool perform particularly well in terms of circuit depths and variational parameter counts. However, this improved performance comes at the expense of an additional measurement overhead compared to standard VQEs. Here, we show that this overhead can be reduced to an amount that grows only linearly with the number of qubits, instead of quartically as in the original ADAPT-VQE. We do this by proving that operator pools of size can represent any state in Hilbert space if chosen appropriately. We prove that this is the minimal size of such complete pools, discuss their algebraic properties, and present necessary and sufficient conditions for their completeness that allow us to find such pools efficiently. We further show that, if the simulated problem possesses symmetries, then complete pools can fail to yield convergent results, unless the pool is chosen to obey certain symmetry rules. We demonstrate the performance of such symmetry-adapted complete pools by using them in classical simulations of ADAPT-VQE for several strongly correlated molecules. Our findings are relevant for any VQE that uses an ansatz based on Pauli strings.
more »
« less
- Award ID(s):
- 1839136
- PAR ID:
- 10475599
- Publisher / Repository:
- Quantum Journal
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 7
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 1040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The low-energy, finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Variational study of two-nucleon systems with lattice QCD, .] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticeably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. Published by the American Physical Society2025more » « less
-
Abstract Many quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a general matrix can be non-unitary, solving a general eigenvalue problem is inherently incompatible with existing unitary-gate-based quantum methods. To fill this gap, this paper introduces a Variational Quantum Universal Eigensolver (VQUE), which is deployable on noisy intermediate scale quantum computers. Our new contributions include: (1) The first universal variational quantum algorithm capable of evaluating the eigenvalues of non-Hermitian matrices—Inspired by Schur’s triangularization theory, VQUE unitarizes the eigenvalue problem to a procedure of searching unitary transformation matrices via quantum devices; (2) A Quantum Process Snapshot technique is devised to make VQUE maintain the potential quantum advantage inherited from the original variational quantum eigensolver—With additional$$O(log_{2}{N})$$ quantum gates, this method efficiently identifies whether a unitary operator is triangular with respect to a given basis; (3) Successful deployment and validation of VQUE on a real noisy quantum computer, which demonstrates the algorithm’s feasibility. We also undertake a comprehensive parametric study to validate VQUE’s scalability, generality, and performance in realistic applications.more » « less
-
We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 andO(2) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified.more » « less
-
Variational approaches are among the most powerful techniques toapproximately solve quantum many-body problems. These encompass bothvariational states based on tensor or neural networks, and parameterizedquantum circuits in variational quantum eigensolvers. However,self-consistent evaluation of the quality of variational wavefunctionsis a notoriously hard task. Using a recently developed Hamiltonianreconstruction method, we propose a multi-faceted approach to evaluatingthe quality of neural-network based wavefunctions. Specifically, weconsider convolutional neural network (CNN) and restricted Boltzmannmachine (RBM) states trained on a square latticespin-1/2 J_1\!-\!J_2 Heisenberg model. We find that the reconstructed Hamiltonians aretypically less frustrated, and have easy-axis anisotropy near the highfrustration point. In addition, the reconstructed Hamiltonians suppressquantum fluctuations in the largeJ_2 limit. Our results highlight the critical importance of thewavefunction’s symmetry. Moreover, the multi-faceted insight from theHamiltonian reconstruction reveals that a variational wave function canfail to capture the true ground state through suppression of quantumfluctuations.more » « less
An official website of the United States government

