A<sc>bstract</sc> We study holographic renormalization group (RG) flows perturbed by a shock wave in dimensionsd≥ 2. The flows are obtained by deforming a holographic conformal field theory with a relevant operator, altering the interior geometry from AdS-Schwarzschild to a more general Kasner universe near the spacelike singularity. We introduce null matter in the form of a shock wave into this geometry and scrutinize its impact on the near-horizon and interior dynamics of the black hole. Using out-of-time-order correlators, we find that the scrambling time increases as we increase the strength of the deformation, whereas the butterfly velocity displays a non-monotonic behavior. We examine other observables that are more sensitive to the black hole interior, such as the thermala-function and the entanglement velocity. Notably, thea-function experiences a discontinuous jump across the shock wave, signaling an instantaneous loss of degrees of freedom due to the infalling matter. This jump is interpreted as a ‘cosmological time skip’ which arises from an infinitely boosted length contraction. The entanglement velocity exhibits similar dependence to the butterfly velocity as we vary the strength of the deformation. Lastly, we extend our analyses to a model where the interior geometry undergoes an infinite sequence of bouncing Kasner epochs.
more »
« less
Anisotropic flows into black holes
A<sc>bstract</sc> We consider anisotropic black holes in the context of holographic renormalization group (RG) flows. We construct ana-function that is stationary at the boundary and the horizon and prove that it is also monotonic in both the exterior and the interior of the black hole. In spite of the reduced symmetry, we find that the “radial” null energy condition is sufficient to ensure the existence of this monotonica-function. After constructing thea-function, we explore a holographic anisotropicp-wave superfluid state as a concrete example and numerical testing grounds. In doing so, we find that thea-function exhibits nontrivial oscillations in the trans-IR regime while preserving monotonicity. We find evidence that such oscillations appear to drive the trans-IR flow into nontrivial fixed points. We conclude by briefly discussing how our work fits into both the broader program of holographic RG flow and quantum information approaches to probing the black hole interior.
more »
« less
- Award ID(s):
- 2112725
- PAR ID:
- 10475606
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Under the correspondence, asymptotically anti–de Sitter geometries with backreaction can be viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet (UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime. In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics, particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of geometric objects in round black holes. We first assert the consistency of interpreting such black holes, including their interiors, as RG flows by constructing a monotonic function. We then explore how UV phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry, which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as functions of the UV physics precisely when the deformation is nonzero. Published by the American Physical Society2024more » « less
-
A<sc>bstract</sc> We use the radial null energy condition to construct a monotonica-function for a certain type of non-relativistic holographic RG flows. We test oura-function in three different geometries that feature a Boomerang RG flow, characterized by a domain wall between two AdS spaces with the same AdS radius, but with different (and sometimes direction-dependent) speeds of light. We find that thea-function monotonically decreases and goes to a constant in the asymptotic regimes of the geometry. Using the holographic dictionary in this asymptotic AdS spaces, we find that thea-function not only reads the fixed point central charge but also the speed of light, suggesting what the correct RG charge might be for non-relativistic RG flows.more » « less
-
We study the black hole information problem within a semiclassicallygravitating AdS _d d black hole coupled to and in equilibrium with a d d -dimensionalthermal conformal bath. We deform the bath state by a relevant scalardeformation, triggering a holographic RG flow whose "trans-IR"region deforms from a Schwarzschild geometry to a Kasner universe. Thesetup manifests two independent scales which control both the extent ofcoarse-graining and the entanglement dynamics when counting Hawkingdegrees of freedom in the bath. In tuning either, we find nontrivialchanges to the Page time and Page curve. We consequently view the Pagecurve as a probe of the holographic RG flow, with a higher Page timemanifesting as a result of increased coarse-graining of the bath degreesof freedom.more » « less
-
A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general tree-level RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin.more » « less
An official website of the United States government

