Abstract Several fishes swim by undulating a thin and elongated median fin while the body is mostly kept straight, allowing them to perform forward and directional maneuvers. We used a robotic vessel with similar fin propulsion to determine the thrust scaling and efficiency. Using precise force and swimming kinematics measurements with the robotic vessel, the thrust generated by the undulating fin was found to scale with the square of the relative velocity between the free streaming flow and the wave speed. A hydrodynamic efficiency is presented based on propulsive force measurements and modelling of the power required to oscillate the fin laterally. It was found that the propulsive efficiency has a broadly high performance versus swimming speed, with a maximum efficiency of 75%. An expression to calculate the swimming speed over wave speed was found to depend on two parameters: A p / A e (ratio between body frontal area to fin swept area) and C D / C x (ratio of body drag to fin thrust coefficient). The models used to calculate propulsive force and free-swimming speed were compared with experimental results. The broader impacts of these results are discussed in relation to morphology and the function of undulating fin swimmers. In particular, we suggest that the ratio of fin and body height found in natural swimmers could be due to a trade-off between swimming efficiency and swimming speed.
more »
« less
Optimal free-surface pumping by an undulating carpet
Abstract Examples of fluid flows driven by undulating boundaries are found in nature across many different length scales. Even though different driving mechanisms have evolved in distinct environments, they perform essentially the same function: directional transport of liquid. Nature-inspired strategies have been adopted in engineered devices to manipulate and direct flow. Here, we demonstrate how an undulating boundary generates large-scale pumping of a thin liquid near the liquid-air interface. Two dimensional traveling waves on the undulator, a canonical strategy to transport fluid at low Reynolds numbers, surprisingly lead to flow rates that depend non-monotonically on the wave speed. Through an asymptotic analysis of the thin-film equations that account for gravity and surface tension, we predict the observed optimal speed that maximizes pumping. Our findings reveal how proximity to free surfaces, which ensure lower energy dissipation, can be leveraged to achieve directional transport of liquids.
more »
« less
- PAR ID:
- 10475614
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The present study compares fluid velocity magnitude and direction for three different glassy carbon electrode systems affecting AC electroosmotic pumping. The flow behavior is analyzed for electroosmotic pumping performed with asymmetric coplanar electrodes. Subsequently, effects of adding microposts array of two different heights (40 μm and 80 μm) are studied. Experimental results demonstrate that as peak-to-peak voltage is increased above 10V peak-to-peak, the flow reversal is achieved for planar electrodes. Utilization of microposts-enhanced asymmetric electrodes blocks the flow reversal and alters the magnitude of the fluid velocity at the application of larger voltages (above 10V peak-to-peak). Understanding of the consequences of three-dimensional geometry of asymmetric electrodes would allow designing the electrode system for AC electroosmotic pumping for electroosmotic mixing and bi-directional pumping with equal forward and backward flow velocities.more » « less
-
Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice.more » « less
-
null (Ed.)Using numerical simulations, we probe the fluid flow in an axisymmetric peristaltic vessel fitted with elastic bi-leaflet valves. In this biomimetic system that mimics the flow generated in lymphatic vessels, we investigate the effects of the valve and vessel properties on pumping performance of the valved peristaltic vessel. The results indicate that valves significantly increase pumping by reducing backflow. The presence of valves, however, increases the viscous resistance, therefore requiring greater work compared to valveless vessels. The benefit of the valves is the most significant when the fluid is pumped against an adverse pressure gradient and for low vessel contraction wave speeds. We identify the optimum vessel and valve parameters leading to the maximum pumping efficiency. We show that the optimum valve elasticity maximizes the pumping flow rate by allowing the valve to block the backflow more effectively while maintaining low resistance during the forward flow. We also examine the pumping in vessels where the vessel contraction amplitude is a function of the adverse pressure gradient, as found in lymphatic vessels. We find that, in this case, the flow is limited by the work generated by the contracting vessel, suggesting that the pumping in lymphatic vessels is constrained by the performance of the lymphatic muscle. Given the regional heterogeneity of valve morphology observed throughout the lymphatic vasculature, these results provide insight into how these variations might facilitate efficient lymphatic transport in the vessel's local physiologic context.more » « less
-
A large diversity of fluid pumps is found throughout nature. The study of these pumps has provided insights into fundamental fluid dynamic processes and inspiration for the development of micro-fluid devices. Recent work by Thiria and Zhang [Appl. Phys. Lett. 106, 054106 (2015)] demonstrated how a reciprocal, valveless pump with a geometric asymmetry could drive net fluid flow due to an impedance mismatch when the fluid moves in different directions. Their pump's geometry is reminiscent of the asymmetries seen in the chains of contractile chambers that form the insect heart and mammalian lymphangions. Inspired by these similarities, we further explored the role of such geometric asymmetry in driving bulk flow in a preferred direction. We used an open-source implementation of the immersed boundary method to solve the fluid-structure interaction problem of a viscous fluid moving through a sawtooth channel whose walls move up and down with a reciprocal motion. Using a machine learning approach based on generalized polynomial chaos expansions, we fully described the model's behavior over the target 3-dimensional design space, composed of input Reynolds numbers (Rein), pumping frequencies, and duty cycles. Scaling studies showed that the pump is more effective at higher intermediate Rein. Moreover, greater volumetric flow rates were observed for near extremal duty cycles, with higher duty cycles (longer contraction and shorter expansion phases) resulting in the highest bulk flow rates.more » « less
An official website of the United States government
