Space division multiplexed elastic optical networks (SDM-EONs) enhance service provisioning by offering increased fiber capacity through the use of flexible spectrum allocation, multiple spatial modes, and efficient modulations. In these networks, the problem of allocating resources for connections involves assigning routes, modulations, cores, and spectrum (RMCSA). However, the presence of intercore crosstalk (XT) between ongoing connections on adjacent cores can degrade signal transmission, necessitating proper handling during resource assignment. The use of multiple modulations in translucent optical networks presents a challenge in balancing spectrum utilization and XT accumulation. In this paper, we propose a dual-optimized RMCSA algorithm called the Capacity Loss Aware Resource Assignment Algorithm (CLARA+), which optimizes network capacity utilization to improve resource availability and network performance. A two-step machine-learning-enabled optimization is used to improve the resource allocations by balancing the tradeoff between spectrum utilization and XT accumulation with the help of feature extraction from the network. Extensive simulations demonstrate that CLARA+ significantly reduces bandwidth blocking probability and enhances resource utilization across various scenarios. We show that our strategy applied to a few algorithms from the literature improves the bandwidth blocking probability by up to three orders of magnitude. The algorithm effectively balances spectrum utilization and XT accumulation more efficiently compared to existing algorithms in the literature.
more »
« less
A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs
The effects of crosstalk and fragmentation cause unnecessary blocking in space-division multiplexing-based elastic optical networks. A routing, modulation, core, and spectrum allocation (RMCSA) algorithm is proposed in this paper using a novel score function that balances the crosstalk and fragmentation. Reduced blocking and fragmentation levels are observed when compared with the benchmark algorithms.
more »
« less
- Award ID(s):
- 1718130
- PAR ID:
- 10475739
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2022 IEEE Future Networks World Forum (FNWF)
- ISBN:
- 978-1-6654-6250-1
- Page Range / eLocation ID:
- 83 to 87
- Format(s):
- Medium: X
- Location:
- Montreal, QC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantum state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On 3 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on 3 IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors.more » « less
-
Thyroid hormones (TH) and glucocorticoids (GC) are involved in numerous developmental and physiological processes. The effects of individual hormones are well documented, but little is known about the joint actions of the two hormones. To decipher the crosstalk between these two hormonal pathways, we conducted a transcriptional analysis of genes regulated by TH, GC, or both hormones together in liver of Xenopus tropicalis tadpoles using RNA-Seq. Among the differentially expressed genes (DE), 70.5% were regulated by TH only, 0.87% by GC only, and 15% by crosstalk between the two hormones. Gene ontology analysis of the crosstalk-regulated genes identified terms referring to DNA replication, DNA repair, and cell-cycle regulation. Biological network analysis identified groups of genes targeted by the hormonal crosstalk and corroborated the gene ontology analysis. Specifically, we found two groups of functionally linked genes (chains) mainly composed of crosstalk-regulated hubs (highly interactive genes), and a large subnetwork centred around the crosstalk-regulated genes psmb6 and cdc7. Most of the genes in the chains are involved in cell-cycle regulation, as are psmb6 and cdc7, which regulate the G2/M transition. Thus, the biological action of these two hormonal pathways acting together in the liver targets cell-cycle regulation.more » « less
-
ABSTRACT Plant immunity activation often results in suppression of plant growth, particularly in the case of constitutive immune activation. We discovered that signaling of the phytohormone cytokinin (CK), known to regulate plant growth through the control of cell division and shoot apical meristem (SAM) activity, can be suppressed by negative crosstalk with the defense phytohormones jasmonic acid (JA), and most evidently, salicylic acid (SA). We show that changing the negative crosstalk of SA on CK signaling in autoimmunity mutants by targeted increase of endogenous CK levels results in plants resistant to pathogens from diverse lifestyles, and relieves suppression of reproductive growth. Moreover, such changes in crosstalk result in a novel reproductive growth phenotype, suggesting a role for defense phytohormones in the SAM, likely through regulation of nitrogen response and cellular redox status. Our data suggest that targeted phytohormone crosstalk engineering can be used to achieve increased reproductive growth and pathogen resistance. SIGNIFICANCE STATEMENTPlants constantly integrate environmental stimuli with developmental programs to optimize their growth and fitness. Excessive activation of the plant immune system often leads to decreased plant growth, a process known as the growth-defense tradeoff. Here, we adapted phytohormone levels in Arabidopsis reproductive tissues of autoimmunity mutants to change phytohormonal crosstalk and diminish the growth tradeoff, resulting in increased broad resistance to pathogens and decreased growth suppression. Similar approaches to phytohormone crosstalk engineering could be used in different contexts to achieve outcomes of higher plant stress resilience and yield.more » « less
-
Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases.more » « less