skip to main content


Search for: All records

Award ID contains: 1718130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traffic demands in future elastic optical networks are expected to be heterogeneous with time-varying bandwidth. Estimating the physical-layer impairments (PLIs) for random bandwidth demands is important for cross-layer network resource provisioning. State-of-the-art PLI estimation techniques yield conservative PLI estimates using the maximum bandwidth, which leads to significant over-provisioning. This paper uses probabilistic information on random bandwidth demands to provide a computationally efficient, accurate, and flexible PLI estimate. The proposed model is consistent with the needs of future self-configuring fiber-optic networks and maximally avoids up to a 25% overestimation of PLIs compared to the benchmark for the cases studied, thus reducing the network design margin at a negligible extra computational cost.

     
    more » « less
  2. Coherent optical transmission systems can be modeled as a four-dimensional (4D) signal space resulting from the two polarization states, each with two quadratures. Recently, nonlinear analytical models have been proposed capable of capturing the impact of Kerr nonlinearity on 4D constellations. None of these addresses the inter-channel nonlinear interference (NLI) imposed by arbitrary modulation formats in multi-channel wavelength division multiplexed (WDM) systems. In this paper, we introduce a general nonlinear model for multi-channel WDM systems that is valid for arbitrary modulation formats, even asymmetric ones. The proposed model converges to the previous models, including the EGN model, in the special case of polarization multiplexed systems. The model focuses on the cross-phase modulation (XPM) nonlinear term that lies at the heart of the NLI in multi-channel WDM systems operating on standard high dispersion single-mode fiber. We show that strategic mappings of the modulation format's coordinates to the polarization states can reduce the NLI undergone by these formats. 
    more » « less
  3. The effects of crosstalk and fragmentation cause unnecessary blocking in space-division multiplexing-based elastic optical networks. A routing, modulation, core, and spectrum allocation (RMCSA) algorithm is proposed in this paper using a novel score function that balances the crosstalk and fragmentation. Reduced blocking and fragmentation levels are observed when compared with the benchmark algorithms. 
    more » « less
  4. Optical transmission systems intrinsically enjoy a four-dimensional (4D) constellation space, corresponding to two quadratures in two polarization states. In this paper, we introduce a general nonlinear model that is valid for 4D symmetric modulation formats. We take the inter-polarization dependency into account to derive this model. The model accounts for all perturbative nonlinear interference (NLI) terms, including self-channel, cross-channel and multi-channel interferences. Split step Fourier simulations show that the proposed model has the ability to predict the NLI with high levels of accuracy for both low and high fiber dispersion regimes. The simulation results further show that previous models, including the EGN model, inaccurately predict the NLI in certain scenarios. 
    more » « less
  5. A closed-form, highly accurate model estimates the cross-channel interference for arbitrary spectrum signals in long-haul fiber-optic transmission. It eliminates estimation errors of up to 37% resulting from assuming a rectangular spectrum for RRC signals. 
    more » « less
  6. In long-haul fiber-optic networks, precise modeling of physical-layer impairments (PLIs) is crucial to optimizing network resource usage while ensuring adequate transmission quality. In order to accurately estimate PLIs, many mathematical models have been proposed. Among them, the so-called Gaussian noise (GN) model is one of the most accurate and simple enough to use on complex continental-size networks. However, the closed-form GN model assumes that the signals can be represented as having rectangular spectra, leading to a significant estimation error in typical cases when this assumption is violated. We propose the component-wise Gaussian noise (CWGN) PLI model that can account for arbitrary spectral-shaped demands. The CWGN model is computationally simple and suitable for most network management approaches. Results indicate that the CWGN model can prevent as much as a 136% overestimation of the PLIs resulting from the closed-form GN model applied to network lightpaths containing cascaded filters. 
    more » « less
  7. Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and resource over-provisioning. The network must provision the hardware and spectrum resources statically, even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hardware limitations, and reconfiguration speed of the control plane. We propose a flexible online–offline probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hardware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLI) for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of network resources.

     
    more » « less
  8. A flexible offline probabilistic (FOP) algorithm is designed to aggressively accommodate random bandwidth traffic demands in long-haul networks. Compared to algorithms that configure demands according to their maximum bandwidth, the FOP algorithm can save 15% of the spectrum used, accommodating over 99% of the throughput demand. 
    more » « less
  9. A probabilistic spectrum Gaussian noise (PSGN) model is proposed to predict the nonlinear noise for random bandwidth traffic in long-haul elastic optical networks. The model reduces the noise estimate 9.1% on average compared to the standard Gaussian noise model applied to the maximum bandwidth. 
    more » « less