skip to main content


Title: A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs
The effects of crosstalk and fragmentation cause unnecessary blocking in space-division multiplexing-based elastic optical networks. A routing, modulation, core, and spectrum allocation (RMCSA) algorithm is proposed in this paper using a novel score function that balances the crosstalk and fragmentation. Reduced blocking and fragmentation levels are observed when compared with the benchmark algorithms.  more » « less
Award ID(s):
1718130
NSF-PAR ID:
10475739
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE Future Networks World Forum (FNWF)
Page Range / eLocation ID:
83 to 87
Format(s):
Medium: X
Location:
Montreal, QC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases.

     
    more » « less
  2. Efficient resource allocation and management can enhance the capacity of an optical backbone network. In this context, spectrum retuning via hitless defragmentation has been presented for elastic optical networks to enhance efficient spectrum accommodation while reducing the unused fragmented spaces in the spectrum. However, the quality of service committed in a service level agreement may be affected due to spectrum retuning. In particular, for transmission beyond the conventional C band, the presence of inter-channel stimulated Raman scattering can severely degrade the quality of the signal during defragmentation. To conquer this problem, this paper proposes, for the first time to our knowledge, a signal-quality-aware proactive defragmentation scheme for theC+Lband system. The proposed scheme prioritizes the minimization of the fragmentation index and quality of transmission (QoT) maintenance for two different defragmentation algorithms, namely, nonlinear-impairment (NLI)-aware defragmentation (NAD) and NLI-unaware defragmentation (NUD). We leverage machine learning techniques for QoT estimation of ongoing lightpaths during spectrum retuning. The optical signal-to-noise ratio of a lightpath is predicted for each choice of spectrum retuning, which helps to monitor the effect of defragmentation on the quality of ongoing lightpaths (in terms of assigned modulation format). Numerical results show that, compared to a baseline algorithm (NUD), the proposed NAD algorithm provides up to 15% capacity increment for smaller networks such as BT-UK, while for larger networks such as the 24-node USA network, a capacity benefit of 23% is achieved in terms of the number of served demands at 1% blocking.

     
    more » « less
  3. Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantum state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On 3 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on 3 IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors. 
    more » « less
  4. Reliability of modern multicore and many-core chips is tightly coupled with the reliability of their on-chip networks. Communication channels in current Network-on-Chips (NoCs) are extremely susceptible to crosstalk faults. In this work, we propose a set of rules for generating classes of crosstalk free coding systems to protect communication channels in NoCs against crosstalk faults. Codewords generated through these rules are free of '101' and '010' bit patterns, which are the main sources of crosstalk faults in NoC communication channels. The proposed rules determine: (1) the weights of different bit positions in a coding system to reach crosstalk free codings, and (2) how the coding might be utilized in an NoC to prevent crosstalk generating bit patterns in NoC channels. Using the proposed set of rules, designers can obtain coding systems which are crosstalk free for any widths of communication channels. Compared to conventional Forbidden Pattern Free (FPF) systems, the proposed methodology is able to provide unique representation to any input values at the lower bound of the codeword lengths. Analyses show that the proposed rules, along with the proposed encoding/decoding mechanisms, are effective in preventing forbidden pattern coding systems for network-on-chips of any arbitrary channel width. 
    more » « less
  5. Abstract

    Many quorum sensing microbes produce more than one chemical signal and detect them using interconnected pathways that crosstalk with each other. While there are many hypotheses for the advantages of sensing multiple signals, the prevalence and functional significance of crosstalk between pathways are much less understood. We explore the effect of intracellular signal crosstalk using a simple model that captures key features of typical quorum sensing pathways: multiple pathways in a hierarchical configuration, operating with positive feedback, with crosstalk at the receptor and promoter levels. We find that crosstalk enables activation or inhibition of one output by the non-cognate signal, broadens the dynamic range of the outputs, and allows one pathway to modulate the feedback circuit of the other. Our findings show how crosstalk between quorum sensing pathways can be viewed not as a detriment to the processing of information, but as a mechanism that enhances the functional range of the full regulatory system. When positive feedback systems are coupled through crosstalk, several new modes of activation or deactivation become possible.

     
    more » « less