skip to main content

Search for: All records

Award ID contains: 1835509

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We introduce a simple entropy-based formalism to characterize the role of mixing in pressure-balanced multiphase clouds and demonstrate example applications usingenzo-e(magneto)hydrodynamic simulations. Under this formalism, the high-dimensional description of the system’s state at a given time is simplified to the joint distribution of mass over pressure (P) and entropy (K=Pργ). As a result, this approach provides a way to (empirically and analytically) quantify the impact of different initial conditions and sets of physics on the system evolution. We find that mixing predominantly alters the distribution along theKdirection and illustrate how the formalism can be used to model mixing and cooling for fluid elements originating in the cloud. We further confirm and generalize a previously suggested criterion for cloud growth in the presence of radiative cooling and demonstrate that the shape of the cooling curve, particularly at the low-temperature end, can play an important role in controlling condensation. Moreover, we discuss the capacity of our approach to generalize such a criterion to apply to additional sets of physics and to build intuition for the impact of subtle higher-order effects not directly addressed by the criterion.

  2. Abstract

    We present a novel analytic framework to model the steady-state structure of multiphase galactic winds comprised of a hot, volume-filling component and a cold, clumpy component. We first derive general expressions for the structure of the hot phase for arbitrary mass, momentum, and energy source terms. Next, informed by recent simulations, we parameterize the cloud–wind mass transfer rates, which are set by the competition between turbulent mixing and radiative cooling. This enables us to cast the cloud–wind interaction as a source term for the hot phase and thereby simultaneously solve for the evolution of both phases, fully accounting for their bidirectional influence. With this model, we explore the nature of galactic winds over a broad range of conditions. We find that (i) with realistic parameter choices, we naturally produce a hot, low-density wind that transports energy while entraining a significant flux of cold clouds, (ii) mixing dominates the cold cloud acceleration and decelerates the hot wind, (iii) during mixing thermalization of relative kinetic energy provides significant heating, (iv) systems with low hot phase mass loading factors and/or star formation rates can sustain higher initial cold phase mass loading factors, but the clouds are quickly shredded, and (v) systems withmore »large hot phase mass loading factors and/or high star formation rates cannot sustain large initial cold phase mass loading factors, but the clouds tend to grow with distance from the galaxy. Our results highlight the necessity of accounting for the multiphase structure of galactic winds, both physically and observationally, and have important implications for feedback in galactic systems.

    « less
  3. ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $10^{14}\, {\rm M}_{\odot }$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fieldsmore »also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.« less
  4. ABSTRACT We present a novel set of stellar feedback models, implemented in the moving-mesh code arepo, designed for galaxy formation simulations with near-parsec (or better) resolution. These include explicit sampling of stars from the IMF, allowing feedback to be linked to individual massive stars, an improved method for the modelling of H ii regions, photoelectric (PE) heating from a spatially varying FUV field and supernova feedback. We perform a suite of 32 simulations of isolated $M_\mathrm{vir} = 10^{10}\, \mathrm{M_\odot }$ galaxies with a baryonic mass resolution of $20\, \mathrm{M_\odot }$ in order to study the non-linear coupling of the different feedback channels. We find that photoionization (PI) and supernova feedback are both independently capable of regulating star formation to the same level, while PE heating is inefficient. PI produces a considerably smoother star formation history than supernovae. When all feedback channels are combined, the additional suppression of star formation rates is minor. However, outflow rates are substantially reduced relative to the supernova only simulations. We show that this is directly caused by a suppression of supernova clustering by the PI feedback, disrupting star-forming clouds prior to the first supernovae. We demonstrate that our results are robust to variations of our starmore »formation prescription, feedback models and the baryon fraction of the galaxy. Our results also imply that the burstiness of star formation and the mass loading of outflows may be overestimated if the adopted star particle mass is considerably larger than the mass of individual stars because this imposes a minimum cluster size.« less