We provide a new method of constructing non-quasiconvex subgroups of hyperbolic groups by utilizing techniques inspired by Stallings’ foldings. The hyperbolic groups constructed are in the natural class of right-angled Coxeter groups (RACGs for short) and can be chosen to be -dimensional. More specifically, given a non-quasiconvex subgroup of a (possibly non-hyperbolic) RACG, our construction gives a corresponding non-quasiconvex subgroup of a hyperbolic RACG. We use this to construct explicit examples of non-quasiconvex subgroups of hyperbolic RACGs including subgroups whose generators are as short as possible (length two words), finitely generated free subgroups, non-finitely presentable subgroups, and subgroups of fundamental groups of square complexes of nonpositive sectional curvature.
more »
« less
Special IMM Groups
Italiano–Martelli–Migliorini recently constructed hyperbolic groups which have non-hyperbolic subgroups of finite type. Using a closely related construction, Llosa Isenrich–Martelli–Py constructed hyperbolic groups with subgroups of type F3 but not F4. We observe that these hyperbolic groups can be chosen to be special in the sense of Haglund–Wise.
more »
« less
- Award ID(s):
- 1904913
- PAR ID:
- 10475806
- Publisher / Repository:
- London Mathematical Society
- Date Published:
- Journal Name:
- Bulletin of the London Mathematical Society
- Volume:
- 54
- Issue:
- 2
- ISSN:
- 0024-6093
- Page Range / eLocation ID:
- 428 to 448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3–manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi- convexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known.more » « less
-
In this note, we generalize a theorem of Juan Souto on rank and Nielsen equivalence in the fundamental group of a hyperbolic fibered [Formula: see text]-manifold to a large class of hyperbolic group extensions. This includes all hyperbolic extensions of surfaces groups as well as hyperbolic extensions of free groups by convex cocompact subgroups of [Formula: see text].more » « less
-
We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3 3 –manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text.more » « less
-
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible spherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all 2-dimensional Artin groups, and for spherical Artin groups of any type other than 𝐸₆, 𝐸₇, 𝐸₈. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.more » « less
An official website of the United States government

