skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rank and Nielsen equivalence in hyperbolic extensions
In this note, we generalize a theorem of Juan Souto on rank and Nielsen equivalence in the fundamental group of a hyperbolic fibered [Formula: see text]-manifold to a large class of hyperbolic group extensions. This includes all hyperbolic extensions of surfaces groups as well as hyperbolic extensions of free groups by convex cocompact subgroups of [Formula: see text].  more » « less
Award ID(s):
1711089 1744551
PAR ID:
10105769
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Algebra and Computation
Volume:
29
Issue:
04
ISSN:
0218-1967
Page Range / eLocation ID:
615 to 625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs. 
    more » « less
  2. [Formula: see text]A hyperbolic code is an evaluation code that improves a Reed–Muller code because the dimension increases while the minimum distance is not penalized. We give necessary and sufficient conditions, based on the basic parameters of the Reed–Muller code, to determine whether a Reed–Muller code coincides with a hyperbolic code. Given a hyperbolic code [Formula: see text], we find the largest Reed–Muller code contained in [Formula: see text] and the smallest Reed–Muller code containing [Formula: see text]. We then prove that similar to Reed–Muller and affine Cartesian codes, the [Formula: see text]th generalized Hamming weight and the [Formula: see text]th footprint of the hyperbolic code coincide. Unlike for Reed–Muller and affine Cartesian codes, determining the [Formula: see text]th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the [Formula: see text]th footprint of a hyperbolic code that, sometimes, are sharp. 
    more » « less
  3. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less
  4. Locally trivial bundles of [Formula: see text]-algebras with fiber [Formula: see text] for a strongly self-absorbing [Formula: see text]-algebra [Formula: see text] over a finite CW-complex [Formula: see text] form a group [Formula: see text] that is the first group of a cohomology theory [Formula: see text]. In this paper, we compute these groups by expressing them in terms of ordinary cohomology and connective [Formula: see text]-theory. To compare the [Formula: see text]-algebraic version of [Formula: see text] with its classical counterpart we also develop a uniqueness result for the unit spectrum of complex periodic topological [Formula: see text]-theory. 
    more » « less
  5. null (Ed.)
    We first develop some basic facts about hypergeometric sheaves on the multiplicative group [Formula: see text] in characteristic [Formula: see text]. Certain of their Kummer pullbacks extend to irreducible local systems on the affine line in characteristic [Formula: see text]. One of these, of rank [Formula: see text] in characteristic [Formula: see text], turns out to have the Conway group [Formula: see text], in its irreducible orthogonal representation of degree [Formula: see text], as its arithmetic and geometric monodromy groups. 
    more » « less