skip to main content


Title: Impacts of Channel‐Spanning Log Jams on Hyporheic Flow
Abstract

In‐stream wood structures, such as single logs, river steps, and debris dams, are known to drive hyporheic flow, defined as the flow that goes into the subsurface region and then back to the free‐flowing surface water. The hyporheic flow plays an important role in regulating water quality and biogeochemical cycles in rivers. Here, we investigated the impact of a channel‐spanning porous log jam, representing piles of wood logs, on hyporheic flow through a combination of direct visualization and theories. Specifically, we developed a method using refractive index‐matched sediment to directly visualize the hyporheic flow around and below a porous log jam, formed by piles of cylindrical rods, in a laboratory flume. We tracked the velocity of a fluorescent dye moving through the transparent sediment underneath the log jam. In addition, we measured the water surface profile and the spatially varying flow velocity near the log jam. Our results show that the normalized log jam‐induced hyporheic flux remained smaller than 10% at Froude numbers () below 0.06 and increased by a factor of five with increasing at . We combined the mass and momentum conservation equations of surface flow with Darcy's equation to explain the dependency of the log jam‐induced hyporheic flux on . Further, we observed that at , the water surface dropped noticeably and the turbulent kinetic energy increased immediately on the downstream side of the log jam. These findings will facilitate future quantification of hyporheic flow caused by channel‐spanning porous log jams.

 
more » « less
NSF-PAR ID:
10476027
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Log jams alter gradients in hydraulic head, increase the area available for hyporheic exchange by creating backwater areas, and lead to the formation of multiple channel branches and bars that drive additional exchange. Here, we numerically simulated stream‐groundwater interactions for two constructed flume systems—one without jams and one with a series of three jams—to quantify the effects of interacting jam structures and channel branches on hyporheic exchange at three stream flow rates. In simulations without jams, average hyporheic exchange rates ranged from 2.1 × 10−4to 2.9 × 10−4 m/s for various stream discharge scenarios, but with jams, exchange rates increased to a range of 1.3 × 10−3–3.5 × 10−3 m/s. Largely due to these increased hyporheic exchange rates, jams increased stream‐groundwater connectivity or decreased the turnover length that stream water travels before interacting with the hyporheic zone, by an order of magnitude, and drove long flow paths that connected multiple jams and channel threads. Decreased turnover lengths corresponded with greater reaction significance per km, a measure of the potential for the hyporheic zone to influence stream water chemistry. For low‐flow conditions, log jams increased reaction significance per km five‐fold, from 0.07 to 0.35. Jams with larger volumes led to longer hyporheic residence times and path lengths that exhibited multiple scales of exchange. Additionally, the longest flow paths connecting multiple jams occurred in the reach with multiple channel branches. These findings suggest that large gains in hydrologic connectivity can be achieved by promoting in‐stream wood accumulation and the natural formation of both jams and branching channels.

     
    more » « less
  2. Abstract

    Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.

     
    more » « less
  3. Abstract

    Logjams in a stream create backwater conditions and locally force water to flow through the streambed, creating zones of transient storage within the surface and subsurface of a stream. We investigate the relative importance of logjam distribution density, logjam permeability, and discharge on transient storage in a simplified experimental channel. We use physical flume experiments in which we inject a salt tracer, monitor fluid conductivity breakthrough curves in surface water, and determine breakthrough‐curve skewness to characterize transient storage. We then develop a companion numerical model in HydroGeoSphere to reveal flow paths through the subsurface (or hyporheic zone) that contribute to some of the longest transient‐storage timescales. In both the flume experiments and numerical simulations, we observe backwater formation and an increase in hyporheic exchange at logjams. Observed complexities in transient storage behavior depend largely on surface water flow in the backwater zone. As expected, multiple successive logjams provide more pervasive hyporheic exchange by distributing the head drop at each jam, leading to distributed but shallow flow paths. Decreasing the permeability of a logjam or increasing the discharge both facilitate greater surface water storage and volumetric rate of hyporheic exchange. Understanding how logjam characteristics affect solute transport through both the channel and hyporheic zone has important management implications for rivers in forested, or historically forested, environments.

     
    more » « less
  4. Abstract

    This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time‐lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6‐km long longitudinal ER surveys during summer and winter. The time‐lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel‐scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.

     
    more » « less
  5. Abstract

    Quantification of velocity and pressure fields over streambeds is important for predicting sediment mobility, benthic and hyporheic habitat qualities, and hyporheic exchange. Here, we report the first experimental investigation of reconstructed water surface elevations and three‐dimensional time‐averaged velocity and pressure fields quantified with non‐invasive image techniques for a three‐dimensional free surface flow around a barely submerged vertical cylinder over a plane bed of coarse granular sediment in a full‐scale flume experiment. Stereo particle image velocimetry coupled with a refractive index‐matched fluid measured velocity data at multiple closely‐spaced parallel and aligned planes. The time‐averaged pressure field was reconstructed using the Rotating Parallel Ray Omni‐Directional integration method to integrate the pressure gradient terms obtained by the balance of all the Reynolds‐Averaged Navier‐Stokes equation terms, which were evaluated with stereo particle image velocimetry. The detailed pressure field allows deriving the water surface profile deformed by the cylinder and hyporheic flows induced by the cylinder.

     
    more » « less