skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining Plant Hydraulics With Microwave Radiometry in a Land Surface Model: Impacts of Temporal Resolution
Abstract Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response.  more » « less
Award ID(s):
1942133
PAR ID:
10476057
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
11
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products. 
    more » « less
  2. Abstract Drylands are critical in regulating global carbon sequestration, but the resiliency of these semi‐arid shrub, grassland and forest systems is under threat from global warming and intensifying water stress. We used synergistic satellite optical‐Infrared (IR) and microwave remote sensing observations to quantify plant‐to‐stand level vegetation water potentials and seasonal changes in dryland water stress in the southwestern U.S. Machine‐learning was employed to re‐construct global satellite microwave vegetation optical depth (VOD) retrievals to 500‐m resolution. The re‐constructed results were able to delineate diverse vegetation conditions undetectable from the original 25‐km VOD record, and showed overall favorable correspondence with in situ plant water potential measurements (R from 0.60 to 0.78). The VOD water potential estimates effectively tracked plant water storage changes from hydro‐climate variability over diverse sub‐regions. The re‐constructed VOD record improves satellite capabilities for monitoring the storage and movement of water across the soil‐vegetation‐atmosphere continuum in heterogeneous drylands. 
    more » « less
  3. null (Ed.)
    Many tropical regions are experiencing an intensification of drought, with increasing severity and frequency of the events. However, the forest ecosystem response to these changes is still highly uncertain. It has been hypothesized that on short time scales (from diurnal to seasonal), tropical forests respond to water stress by physiological controls, such as stomata regulation and phenological adjustment, to control increasing atmospheric water demand and cope with reduced water supply. However, the interactions among biological processes and co-varying environmental factors that determine the ecosystem-level fluxes are still unclear. Furthermore, climate variability at longer time scales, such as that generated by ENSO, produces less predictable effects, which might vary among forests and ecoregions within the tropics. This study will present some emerging patterns of response to water stress from five years of observations of water, carbon, and energy fluxes on the seasonal tropical forest in Barro Colorado Island (Panama), including an increase in productivity during the 2015 El Niño. We will show how these responses will depend critically on the combination of environmental factors experienced by the forest along the seasonal cycle. These results suggest a critical role of plant hydraulics in mediating the response to water stress on a broad range of temporal scales, including during the wet seasons when water availability is not a limiting factor. The study also found that the response to large-scale drought events is contingent and might produce a different outcome in different tropical forest areas. 
    more » « less
  4. Abstract An observationally based global climatology of the temperature diurnal cycle in the lower stratosphere is derived from 11 different satellites with global positioning system–radio occultation (GPS-RO) measurements from 2006 to 2020. Methods used in our analysis allow for accurate characterization of global stratospheric temperature diurnal cycles, even in the high latitudes where the diurnal signal is small but longer time-scale variability is large. A climatology of the synthetic Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) Temperature in the Lower Stratosphere (TLS) is presented to assess the accuracy of diurnal cycle climatologies for the MSU and AMSU TLS observations, which have traditionally been generated by model data. The TLS diurnal ranges are typically less than 0.4 K in all latitude bands and seasons investigated. It is shown that the diurnal range (maximum minus minimum temperature) of TLS is largest over Southern Hemisphere tropical land in the boreal winter season, indicating the important role of deep convection. The range, phase, and seasonality of the TLS diurnal cycle are generally well captured by the WACCM6 simulation and ERA5 dataset. We also present an observationally based diurnal cycle climatology of temperature profiles from 300 to 10 hPa for various latitude bands and seasons and compare the ERA5 data with the observations. 
    more » « less
  5. Abstract The diurnal cycle of precipitation plays a crucial role in regulating Earth's water cycle, energy balance, and regional climate patterns. However, the diurnal precipitation across mainland Southeast Asia (MSEA) and the factors influencing its spatial variations are not fully understood. In this study, we investigated diurnal precipitation patterns in summertime (June–August) from 2002 to 2005 over MSEA using ground‐based observations, satellite products, the global ERA5 reanalysis, and high‐resolution simulations from the Weather Research and Forecasting (WRF) Model at 9‐ and 3‐km grid spacing forced by ERA5 hourly data on ∼0.25° grids. Various observation‐based data sets including GHCN‐Daily, Multi‐Source Weighted‐Ensemble Precipitation (MSWEP), Asian Precipitation ‐ Highly‐Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Integrated Multi‐satellite Retrievals for Global Precipitation Measurement (IMERG) were used. In evaluating daily precipitation over MSEA, MSWEP, and APHRODITE data sets show similar patterns in precipitation amount, frequency, and intensity, while IMERG tends to produce higher amounts but with less frequency. ERA5 overestimates light precipitation compared to the other data sets. The WRF simulations generally produce heavier but less frequent light precipitation, with the 3‐km simulation producing less intense precipitation than the 9‐km simulation. A k‐means classification of IMERG data revealed five distinct spatial regimes with varying diurnal precipitation cycles. The WRF simulations closely match these regimes, capturing key diurnal cycles missed by ERA5 over mountainous regions and coastlines. Additionally, convective activities and near‐surface winds influence these cycles, with WRF simulations better representing coastal and mountain precipitation patterns than ERA5. High‐resolution WRF simulations, especially the 3‐km simulation, capture diurnal precipitation more accurately than ERA5, highlighting the importance of employing convection‐permitting models to simulate precipitation diurnal cycles over complex terrain. 
    more » « less