skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced Satellite Monitoring of Dryland Vegetation Water Potential Through Multi‐Source Sensor Fusion
Abstract Drylands are critical in regulating global carbon sequestration, but the resiliency of these semi‐arid shrub, grassland and forest systems is under threat from global warming and intensifying water stress. We used synergistic satellite optical‐Infrared (IR) and microwave remote sensing observations to quantify plant‐to‐stand level vegetation water potentials and seasonal changes in dryland water stress in the southwestern U.S. Machine‐learning was employed to re‐construct global satellite microwave vegetation optical depth (VOD) retrievals to 500‐m resolution. The re‐constructed results were able to delineate diverse vegetation conditions undetectable from the original 25‐km VOD record, and showed overall favorable correspondence with in situ plant water potential measurements (R from 0.60 to 0.78). The VOD water potential estimates effectively tracked plant water storage changes from hydro‐climate variability over diverse sub‐regions. The re‐constructed VOD record improves satellite capabilities for monitoring the storage and movement of water across the soil‐vegetation‐atmosphere continuum in heterogeneous drylands.  more » « less
Award ID(s):
2331162
PAR ID:
10576782
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response. 
    more » « less
  2. ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. 
    more » « less
  3. null (Ed.)
    Drylands are a critical part of the earth system in terms of total area, socioeconomic and ecological importance. However, while drylands are known for their contribution to inter-annual atmospheric CO 2 variability, they are sometimes overlooked in discussions of global carbon stocks. Here, in preparation for the November 2021 UN Climate Change Conference (COP26), we review dryland systems with emphasis on their role in current and future carbon storage, response to climate change and potential to contribute to a carbon neutral future. Current estimates of carbon in dryland soils and vegetation suggest they are significant at global scale, containing approximately 30% of global carbon in above and below-ground biomass, and surface-layer soil carbon (top 30 cm). As ecosystems that are limited by water, the drylands are vulnerable to climate change. Climate change impacts are, however, dependent on future trends in rainfall that include both drying and wetting trends at regional scales. Regional rainfall trends will initiate trends in dryland productivity, vegetation structure and soil carbon storage. However, while management of fire and herbivory can contribute to increased carbon sequestration, impacts are dependent on locally unique ecosystem responses and climate-soil-plant interactions. Similarly, while community based agroforestry initiatives have been successful in some areas, large-scale afforestation programs are logistically infeasible and sometimes ecologically inappropriate at larger scales. As climate changes, top-down prescriptive measures designed to increase carbon storage should be avoided in favour of locally-adapted approaches that balance carbon management priorities with local livelihoods, ecosystem function, biodiversity and cultural, social and economic priorities. 
    more » « less
  4. Abstract A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation. 
    more » « less
  5. Abstract The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well‐being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re‐greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady‐state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re‐greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration. 
    more » « less