skip to main content


This content will become publicly available on October 27, 2024

Title: Screening and Discovery of Metal Compound Active Sites for Strong and Selective Adsorption of N 2 in Air
Abstract

Photocatalytic nitrogen fixation has the potential to provide a greener route for producing nitrogen‐based fertilizers under ambient conditions. Computational screening is a promising route to discover new materials for the nitrogen fixation process, but requires identifying “descriptors” that can be efficiently computed. In this work, we argue that selectivity toward the adsorption of molecular nitrogen and oxygen can act as a key descriptor. A catalyst that can selectively adsorb nitrogen and resist poisoning of oxygen and other molecules present in air has the potential to facilitate the nitrogen fixation process under ambient conditions. We provide a framework for active site screening based on multifidelity density functional theory (DFT) calculations for a range of metal oxides, oxyborides, and oxyphosphides. The screening methodology consists of initial low‐fidelity fixed geometry calculations and a second screening in which more expensive geometry optimizations were performed. The approach identifies promising active sites on several TiO2polymorph surfaces and a VBO4surface, and the full nitrogen reduction pathway is studied with the BEEF‐vdW and HSE06 functionals on two active sites. The findings suggest that metastable TiO2polymorphs may play a role in photocatalytic nitrogen fixation, and that VBO4may be an interesting material for further studies.

 
more » « less
Award ID(s):
1943707
NSF-PAR ID:
10476063
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSusChem
Volume:
16
Issue:
22
ISSN:
1864-5631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N 2 fixation are in the powder form, suffering from agglomeration and difficulty in the collection and leading to unsatisfactory conversion efficiency. Developing efficient film catalysts for N 2 photofixation under ambient conditions remains challenging. Herein, we report the efficient photofixation of N 2 over a periodic WS 2 @TiO 2 nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO 2 nanoporous films through Ar annealing treatment, which plays a vital role in N 2 adsorption and activation. The periodic WS 2 @TiO 2 nanoporous film with an optimized WS 2 content shows highly efficient photocatalytic performance for N 2 fixation with an NH 3 evolution rate of 1.39 mmol g −1 h −1 , representing one of the state-of-the-art catalysts. 
    more » « less
  2. Abstract

    Transition metal‐nitrogen‐carbon materials with atomically dispersed active sites are promising catalysts for oxygen evolution reaction (OER) since they combine the strengths of both homogeneous and heterogeneous catalysts. However, the canonically symmetric active site usually exhibits poor OER intrinsic activity due to its excessively strong or weak oxygen species adsorption. Here, a catalyst with asymmetric MN4sites based on the 3‐s‐triazine of g‐C3N4(termed as a‐MN4@NC) is proposed. Compared to symmetric, the asymmetric active sites directly modulate the oxygen species adsorption via unifying planar and axial orbitals (dx2y2, dz2), thus enabling higher OER intrinsic activity. In Silico screening suggested that cobalt has the best OER activity among familiar nonprecious transition metal. These experimental results suggest that the intrinsic activity of asymmetric active sites (179 mV overpotential at onset potential) is enhanced by 48.4% compared to symmetric under similar conditions. Remarkably, a‐CoN4@NC showed excellent activity in alkaline water electrolyzer (AWE) device as OER catalyst, the electrolyzer only required 1.7 V and 2.1 V respectively to reach the current density of 150 mA cm−2and 500 mA cm−2. This work opens an avenue for modulating the active sites to obtain high intrinsic electrocatalytic performance including, but not limited to, OER.

     
    more » « less
  3. Abstract

    Titanium dioxide (TiO2) is a promising electrode material for reversible lithium storage. However, the poor electronic conductivity, sluggish diffusivity, and intrinsic kinetics limit hinder its fast lithium storage capability. Here we present that the oxygen‐deficient TiO2hierarchical spheres can address the issues for high capacity, long‐term lithium‐ion battery anode. First‐principles calculations show that introducing oxygen vacancies to anatase TiO2can reduce the bandgap, thus improving the electronic conductivity and further the lithium storage properties of TiO2. By annealing TiO2/H2Ti5O11⋅3H2O hierarchical spheres precursor in nitrogen, accompanying with the phase transfer process, the growth of TiO2crystallites is restricted due to the generation of residual carbon species, resulting in a well maintained hierarchical spherical structure. Rich oxygen vacancies are generated in the oxygen‐deficient environment and evidenced by EPR, XPS, and UV‐Vis spectra, which enable the TiO2hierarchical spheres reduced bandgap. The oxygen vacancies in the as‐obtained TiO2hierarchical spheres together with the high structural integrity of the hierarchical spheres gives rise to superior lithium storage properties including a high specific capacity of 282 mAh g−1at 200 mA g−1, and long‐term cycling stability with a capacity retention of 85.2 % at 4 A g−1over 10000 cycles.

     
    more » « less
  4. Abstract

    Photo‐responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low‐temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4Ti4O15(SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g−1h−1, without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self‐polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts.

     
    more » « less
  5. Abstract

    The hydrogen peroxide (H2O2) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy‐intensive anthraquinone process and unsafe direct synthesis using H2and O2. It enables on‐site and decentralized H2O2production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)‐free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2O2production via the 2eORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2to H2O2reduction are summarized. Combined with theoretical computation and advanced characterization, a structure–property correlation to guide rational catalyst design with a favorable 2eORR process is aimed to provide. Due to the oxidative nature of H2O2and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2O2are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.

     
    more » « less