Abstract Ophiocordycepsfungi manipulate the behaviour of their ant hosts to produce a summit disease phenotype, thereby establishing infected ant cadavers onto vegetation at elevated positions suitable for fungal growth and transmission. Multiple environmental and ecological factors have been proposed to shape the timing, positioning and outcome of these manipulations.We conducted a long‐term field study ofOphiocordyceps camponoti‐floridaniinfections ofCamponotus floridanusants—the Florida zombie ants. We propose and refine hypotheses on the factors that shape infection outcomes by tracking the occurrence of and fungal growth from hundreds of ant cadavers. We modelled and report these data in relation to weather, light, vegetation and attack by hyperparasites.We investigated environmental factors that could affect the occurrence and location of newly manipulated ant cadavers. New cadaver occurrence was preferentially biased towards epiphyticTillandsiabromeliads, canopy openness and summer weather conditions (an interactive effect of temperature, humidity and precipitation). Furthermore, we suggest that incident light at the individual cadaver level reflects microhabitat choice by manipulated ants or selective pressure on cadaver maintenance for conditions that improve fungal survival.We also asked which environmental conditions affect fungal fitness. Continued fungal development of reproductive structures and putative transmission increased with moist weather conditions (interaction of humidity and precipitation) and canopy openness, while being reduced by hyperparasitic mycoparasite infections. Moreover, under the most open canopy conditions, we found an atypicalOphiocordycepsgrowth morphology that could represent a plastic response to conditions influenced by high light levels.Taken together, we explore general trends and the effects of various ecological conditions on host and parasite disease outcomes in the Florida zombie ant system. These insights from the field can be used to inform experimental laboratory setups that directly test the effects of biotic and abiotic factors on fungus–ant interactions or aim to uncover underlying molecular mechanisms. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
Using machine learning to predict protein–protein interactions between a zombie ant fungus and its carpenter ant host
Abstract Parasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host responses. These proteins, classified as a type of “effector,” often act via protein–protein interactions (PPIs). The fungal parasiteOphiocordyceps camponoti-floridani(zombie ant fungus) manipulatesCamponotus floridanus(carpenter ant) behavior to promote transmission. The most striking aspect of this behavioral change is a summit disease phenotype where infected hosts ascend and attach to an elevated position. Plausibly, interspecific PPIs drive aspects ofOphiocordycepsinfection and host manipulation. Machine learning PPI predictions offer high-throughput methods to produce mechanistic hypotheses on how this behavioral manipulation occurs. Using D-SCRIPT to predict host–parasite PPIs, we found ca. 6000 interactions involving 2083 host proteins and 129 parasite proteins, which are encoded by genes upregulated during manipulated behavior. We identified multiple overrepresentations of functional annotations among these proteins. The strongest signals in the host highlighted neuromodulatory G-protein coupled receptors and oxidation–reduction processes. We also detectedCamponotusstructural and gene-regulatory proteins. In the parasite, we found enrichment ofOphiocordycepsproteases and frequent involvement of novel small secreted proteins with unknown functions. From these results, we provide new hypotheses on potential parasite effectors and host targets underlying zombie ant behavioral manipulation.
more »
« less
- Award ID(s):
- 2109435
- PAR ID:
- 10476198
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstracts Ophiocordycepsfungi manipulate ant behaviour as a transmission strategy. Conspicuous changes in the daily timing of disease phenotypes suggest thatOphiocordycepsand other manipulators could be hijacking the host clock. We discuss the available data that support the notion thatOphiocordycepsfungi could be hijacking ant host clocks and consider how altering daily behavioural rhythms could benefit the fungal infection cycle. By reviewing time‐course transcriptomics data for the parasite and the host, we argue thatOphiocordycepshas a light‐entrainable clock that might drive daily expression of candidate manipulation genes. Moreover, ant rhythms are seemingly highly plastic and involved in behavioural division of labour, which could make them susceptible to parasite hijacking. To provisionally test whether the expression of ant behavioural plasticity and rhythmicity genes could be affected by fungal manipulation, we performed a gene co‐expression network analysis on ant time‐course data and linked it to available behavioural manipulation data. We found that behavioural plasticity genes reside in the same modules as those affected during fungal manipulation. These modules showed significant connectivity with rhythmic gene modules, suggesting thatOphiocordycepscould be indirectly affecting the expression of those genes as well.more » « less
-
During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani , which manipulates the behavior of the carpenter ant Camponotus floridanus , two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani . Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces , each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae , respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macro-morphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae , suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses.more » « less
-
Coevolutionary relationships between parasites and their hosts can lead to the emergence of diverse phenotypes over time, as seen in Ophiocordyceps fungi that manipulate insect and arachnid behaviour to aid fungal spore transmission. The most conspicuous examples are found in ants of the Camponotini tribe, colloquially known as ‘zombie ants’. While the behaviours induced during infection are well described, their molecular underpinnings remain unknown. Recent genomics and transcriptomics ana- lyses of Ophiocordyceps camponoti-floridani have identified several highly upregulated biomolecules produced by the fungus during infection of Camponotus floridanus. Among them is an ergot alkaloid related to the mycotoxin aflatrem, known to cause ‘staggers syndrome’ in cows. Staggering, defined as unsteady movements side to side, is also observed in C. floridanus ants during late-stage infection. To test whether aflatrem-like compounds could be responsible, we injected healthy ants with aflatrem and recorded their behaviour for 30 min. Using both the automated object-tracking software MARGO and manual behavioural quantification, we found that aflatrem reduced ant activity and speed and increased staggering behaviours. To examine underlying transcriptomic changes, we performed RNA-seq on the heads of aflatrem-injected ants, keeping in step with previous transcriptomic work on Ophiocordyceps- manipulated ants. We identified 261 genes that were significantly dysregulated in the aflatrem-injected ants compared to sham-injected controls. When compared with RNA-seq data from Ophiocordyceps- manipulated ants, we found that both groups shared 113 differentially regulated genes. These included sensory neuron membrane protein genes, several odorant-binding protein genes and musculoskeletal genes such as titin and obscurin. Together, these results indicate that aflatrem-like compounds significantly affect neuromuscular and sensory function in C. floridanus. The conservation of staggers phenotype between C. floridanus and Bos taurus suggests that behaviour-manipulating strategies exhibited across the Tree of Life may be more similar in approach, if not widely different in application, than we realize.more » « less
-
Abstract BackgroundCircadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity inCamponotus floridanuscarpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. ResultsWe found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genesPeriodandShaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found thatVitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. ConclusionThis study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found inC. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.more » « less
An official website of the United States government

