skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor
Abstract BackgroundCircadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity inCamponotus floridanuscarpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. ResultsWe found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genesPeriodandShaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found thatVitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. ConclusionThis study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found inC. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.  more » « less
Award ID(s):
1941546
PAR ID:
10361486
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Genomics
Volume:
23
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Circadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms. At the same time, foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies exploring the ontogeny of circadian rhythms of workers showed that the onset of rhythms is faster in the colony environment (~2 days) than if workers were immediately isolated after eclosion (7–9 days). However, which specific environmental factors influenced the early development of worker circadian rhythms remained unknown. We hypothesized that brood nest temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at brood nest-like temperatures (33–35 °C) in the laboratory develop circadian rhythms faster and in greater proportion than bees kept at lower temperatures (24–26 °C). In addition, we examined if the effect of colony temperature during the first 48 h after emergence is sufficient to increase the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals exposed to 35 °C during the first 48 h developed circadian rhythms compared to individuals kept at 25 °C, suggesting a critical developmental period where brood nest temperatures are important for the development of the circadian system. Together, our findings show that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers. 
    more » « less
  2. Abstracts Ophiocordycepsfungi manipulate ant behaviour as a transmission strategy. Conspicuous changes in the daily timing of disease phenotypes suggest thatOphiocordycepsand other manipulators could be hijacking the host clock. We discuss the available data that support the notion thatOphiocordycepsfungi could be hijacking ant host clocks and consider how altering daily behavioural rhythms could benefit the fungal infection cycle. By reviewing time‐course transcriptomics data for the parasite and the host, we argue thatOphiocordycepshas a light‐entrainable clock that might drive daily expression of candidate manipulation genes. Moreover, ant rhythms are seemingly highly plastic and involved in behavioural division of labour, which could make them susceptible to parasite hijacking. To provisionally test whether the expression of ant behavioural plasticity and rhythmicity genes could be affected by fungal manipulation, we performed a gene co‐expression network analysis on ant time‐course data and linked it to available behavioural manipulation data. We found that behavioural plasticity genes reside in the same modules as those affected during fungal manipulation. These modules showed significant connectivity with rhythmic gene modules, suggesting thatOphiocordycepscould be indirectly affecting the expression of those genes as well. 
    more » « less
  3. Ewer, John (Ed.)
    Daily behavioral and physiological rhythms are controlled by the brain’s circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which inDrosophilainclude the transcriptional activatorsClock (Clk)andcycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. TheDrosophilatimekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock genecycspecifically in thePdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role ofcyc, as both knocking downcycor expressing a dominant negative form ofcycexclusively during development lead to defasciculation phenotypes in adult clock neurons.Clkdownregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role forcyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system. 
    more » « less
  4. Summary The timing of insects’ daily (feeding, movement) and seasonal (diapause, migration) rhythms affects their population dynamics and distribution. Yet, despite their implications for insect conservation and pest management, the genetic mechanisms underlying variation in timing are poorly understood. Prior research in the European corn borer moth (Ostrinia nubilalis) associated ecotype differences in seasonal diapause and daily activity with genetic variation at the circadian clock geneperiod(per). Here, we demonstrate that populations with divergent allele frequencies atperexhibit differences in daily behavior, seasonal development, and the expression of circadian clock genes. Specifically, later daily activity and shortened diapause were associated with a reduction and delay in the abundance of cyclingpermRNA. CRISPR/Cas9-mediated mutagenesis revealed thatperand/or an intact circadian clock network were essential for the appropriate timing of daily behavior and seasonal responsiveness. Furthermore, a reduction ofpergene dosage inperheterozygous mutants (per-/+) pleiotropically decreased the diapause incidence, shortened post-diapause development, and delayed the timing of daily behavior, in a manner phenotypically reminiscent of wild-type individuals. Altogether, this combination of observational and experimental research strongly suggests thatperis a master regulator of biological rhythms and may contribute to the observed life cycle differences between bivoltine (two generation) and univoltine (one generation)O. nubilalis. HighlightsNatural ecotypes with divergentperiod(per) genotypes differ in their daily and seasonal responses to photoperiodLater daily activity, reduced diapause incidence, and shorter post-diapause development is associated with reducedpermRNA abundanceperis essential for short-day recognition and daily timingReducedpergene dosage shortened post-diapause development and delayed locomotor activity 
    more » « less
  5. Imperiale, Michael J. (Ed.)
    ABSTRACT Within social insect colonies, microbiomes often differ between castes due to their different functional roles and between colony locations. Trachymyrmex septentrionalis fungus-growing ants form colonies throughout the eastern United States and northern Mexico that include workers, female and male alates (unmated reproductive castes), larvae, and pupae. How T. septentrionalis microbiomes vary across this geographic range and between castes is unknown. Our sampling of individual ants from colonies across the eastern United States revealed a conserved T. septentrionalis worker ant microbiome and revealed that worker ant microbiomes are more conserved within colonies than between them. A deeper sampling of individual ants from two colonies that included all available castes (pupae, larvae, workers, and female and male alates), from both before and after adaptation to controlled laboratory conditions, revealed that ant microbiomes from each colony, caste, and rearing condition were typically conserved within but not between each sampling category. Tenericute bacterial symbionts were especially abundant in these ant microbiomes and varied widely in abundance between sampling categories. This study demonstrates how individual insect colonies primarily drive the composition of their microbiomes and shows that these microbiomes are further modified by developmental differences between insect castes and the different environmental conditions experienced by each colony. IMPORTANCE This study investigates microbiome assembly in the fungus-growing ant Trachymyrmex septentrionalis , showing how colony, caste, and lab adaptation influence the microbiome and revealing unique patterns of mollicute symbiont abundance. We find that ant microbiomes differ strongly between colonies but less so within colonies. Microbiomes of different castes and following lab adaptation also differ in a colony-specific manner. This study advances our understanding of the nature of individuality in social insect microbiomes and cautions against the common practice of only sampling a limited number of populations to understand microbiome diversity and function. 
    more » « less