skip to main content


This content will become publicly available on May 30, 2024

Title: Star cluster formation from turbulent clumps – III. Across the mass spectrum
ABSTRACT

We study the formation and early evolution of star clusters that have a wide range of masses and background cloud mass surface densities, Σcloud, which help set the initial sizes, densities, and velocity dispersions of the natal gas clumps. Initial clump masses of 300, 3000, and 30 000 M⊙ are considered, from which star clusters are born with an assumed 50  per cent overall star formation efficiency and with 50  per cent primordial binarity. This formation is gradual, i.e. with a range of star formation efficiencies per free-fall time from 1 to 100  per cent, so that the formation time can range from 0.7 Myr for low-mass, high-Σcloud clumps to ∼30 Myr for high-mass, low-Σcloud clumps. Within this framework of the turbulent clump model, for a given Σcloud, clumps of higher mass are of lower initial volume density, but their dynamical evolution leads to higher bound fractions and causes them to form much higher density cluster cores and maintain these densities for longer periods. This results in systematic differences in the evolution of binary properties, degrees of mass segregation, and rates of creation of dynamically ejected runaways. We discuss the implications of these results for observed star clusters and stellar populations.

 
more » « less
Award ID(s):
1748571
NSF-PAR ID:
10476237
Author(s) / Creator(s):
;
Publisher / Repository:
MNRAS
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2083 to 2110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Formation of supermassive black holes (BHs) remains a theoretical challenge. In many models, especially beginning from stellar relic ‘seeds,’ this requires sustained super-Eddington accretion. While studies have shown BHs can violate the Eddington limit on accretion disc scales given sufficient ‘fuelling’ from larger scales, what remains unclear is whether or not BHs can actually capture sufficient gas from their surrounding interstellar medium (ISM). We explore this in a suite of multiphysics high-resolution simulations of BH growth in magnetized, star-forming dense gas complexes including dynamical stellar feedback from radiation, stellar mass-loss, and supernovae, exploring populations of seeds with masses $\sim 1\!-\!10^{4}\, \mathrm{M}_{\odot }$. In this initial study, we neglect feedback from the BHs: so this sets a strong upper limit to the accretion rates seeds can sustain. We show that stellar feedback plays a key role. Complexes with gravitational pressure/surface density below $\sim 10^{3}\, \mathrm{M}_{\odot }\, {\rm pc^{-2}}$ are disrupted with low star formation efficiencies so provide poor environments for BH growth. But in denser cloud complexes, early stellar feedback does not rapidly destroy the clouds but does generate strong shocks and dense clumps, allowing $\sim 1{{\ \rm per\ cent}}$ of randomly initialized seeds to encounter a dense clump with low relative velocity and produce runaway, hyper-Eddington accretion (growing by orders of magnitude). Remarkably, mass growth under these conditions is almost independent of initial BH mass, allowing rapid intermediate-mass black hole (IMBH) formation even for stellar-mass seeds. This defines a necessary (but perhaps not sufficient) set of criteria for runaway BH growth: we provide analytic estimates for the probability of runaway growth under different ISM conditions.

     
    more » « less
  2. ABSTRACT

    The formation mechanism of the most massive stars is far from completely understood. It is still unclear if the formation is core-fed or clump-fed, i.e. if the process is an extension of what happens in low-mass stars, or if the process is more dynamical such as a continuous, multiscale accretion from the gas at parsec (or even larger) scales. In this context, we introduce the SQUALO project, an ALMA 1.3 and 3 mm survey designed to investigate the properties of 13 massive clumps selected at various evolutionary stages, with the common feature that they all show evidence for accretion at the clump scale. In this work, we present the results obtained from the 1.3 mm continuum data. Our observations identify 55 objects with masses in the range 0.4 ≤ M ≤ 309 M⊙, with evidence that the youngest clumps already present some degree of fragmentation. The data show that physical properties such as mass and surface density of the fragments and their parent clumps are tightly correlated. The minimum distance between fragments decreases with evolution, suggesting a dynamical scenario in which massive clumps first fragment under the influence of non-thermal motions driven by the competition between turbulence and gravity. With time gravitational collapse takes over and the fragments organize themselves into more thermally supported objects while continuing to accrete from their parent clump. Finally, one source does not fragment, suggesting that the support of other mechanisms (such as magnetic fields) is crucial only in specific star-forming regions.

     
    more » « less
  3. ABSTRACT

    We perform simulations of star cluster formation to investigate the morphological evolution of embedded star clusters in the earliest stages of their evolution. We conduct our simulations with Torch, which uses the Amuse framework to couple state-of-the-art stellar dynamics to star formation, radiation, stellar winds, and hydrodynamics in Flash. We simulate a suite of 104 M⊙ clouds at 0.0683 pc resolution for ∼2 Myr after the onset of star formation, with virial parameters α = 0.8, 2.0, 4.0 and different random samplings of the stellar initial mass function and prescriptions for primordial binaries. Our simulations result in a population of embedded clusters with realistic morphologies (sizes, densities, and ellipticities) that reproduce the known trend of clouds with higher initial α having lower star formation efficiencies. Our key results are as follows: (1) Cluster mass growth is not monotonic, and clusters can lose up to half of their mass while they are embedded. (2) Cluster morphology is not correlated with cluster mass and changes over ∼0.01 Myr time-scales. (3) The morphology of an embedded cluster is not indicative of its long-term evolution but only of its recent history: radius and ellipticity increase sharply when a cluster accretes stars. (4) The dynamical evolution of very young embedded clusters with masses ≲1000 M⊙ is dominated by the overall gravitational potential of the star-forming region rather than by internal dynamical processes such as two- or few-body relaxation.

     
    more » « less
  4. ABSTRACT

    The evolutionary sequence for high-mass star formation starts with massive starless clumps that go on to form protostellar, young stellar objects and then compact H ii regions. While there are many examples of the three later stages, the very early stages have proved to be elusive. We follow-up a sample of 110 mid-infrared dark clumps selected from the ATLASGAL catalogue with the IRAM telescope in an effort to identify a robust sample of massive starless clumps. We have used the HCO+ and HNC (1-0) transitions to identify clumps associated with infall motion and the SiO (2-1) transition to identity outflow candidates. We have found blue asymmetric line profile in 65 per cent of the sample, and have measured the infall velocities and mass infall rates (0.6–36 × 10−3 M⊙ yr−1) for 33 of these clumps. We find a trend for the mass infall rate decreasing with an increase of bolometric luminosity to clump mass, i.e. star formation within the clumps evolves. Using the SiO 2-1 line, we have identified good outflow candidates. Combining the infall and outflow tracers reveals that 67 per cent of quiescent clumps are already undergoing gravitational collapse or are associated with star formation; these clumps provide us with our best opportunity to determine the initial conditions and study the earliest stages of massive star formation. Finally, we provide an overview of a systematic high-resolution ALMA study of quiescent clumps selected that allows us to develop a detailed understanding of earliest stages and their subsequent evolution.

     
    more » « less
  5. Abstract

    We present ∼10–40μm SOFIA-FORCAST images of 11isolatedprotostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37μm imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core massesMcranging from 20–430M, clump mass surface densities Σcl∼ 0.3–1.7 g cm−2, and current protostellar massesm*∼ 3–50M. From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold Σclfor massive star formation. However, the upper end of them*−Σcldistribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher Σclconditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an ∼40 yr baseline.

     
    more » « less