Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells.
more »
« less
On the Dynamics of Ultrarelativistic Electrons (>2 MeV) Near L * = 3.5 During 8 June 2015
Abstract Understanding local loss processes in Earth’s radiation belts is critical to understanding their overall structure. Electromagnetic ion cyclotron waves can cause rapid loss of multi‐MeV electrons in the radiation belts. These loss effects have been observed at a range ofL* values, recently as low asL* = 3.5. Here, we present a case study of an event where a local minimum develops in multi‐MeV electron phase space density (PSD) nearL* = 3.5 and evaluate the possibility of electromagnetic ion cyclotron (EMIC) waves in contributing to the observed loss feature. Signatures of EMIC waves are shown including rapid local loss and pitch angle bite outs. Analysis of the wave power spectral density during the event shows EMIC wave occurrence at higherL* values. Using representative wave parameters, we calculate minimum resonant energies, diffusion coefficients, and simulate the evolution of electron PSD during this event. From these results, we find that O+ band EMIC waves could be contributing to the local loss feature during this event. O+ band EMIC waves are uncommon, but do occur in theseL* ranges, and therefore may be a significant driver of radiation belt dynamics under certain preconditioning of the radiation belts.
more »
« less
- PAR ID:
- 10476390
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate relativistic electron precipitation events detected by Polar Environmental Satellites (POES) in low‐Earth orbit in close conjunction with Van Allen Probe A observations of electromagnetic ion cyclotron (EMIC) waves near the geomagnetic equator. We show that the occurrence rate of >0.7 MeV electron precipitation recorded by POES during those times strongly increases, reaching statistically significant levels when the minimum electron energy for cyclotron resonance with hydrogen or helium band EMIC waves at the equator decreases below ≃1.0–2.5 MeV, as expected from the quasi‐linear theory. Both hydrogen and helium band EMIC waves can be effective in precipitating MeV electrons. However, >0.7 MeV electron precipitation is more often observed (at statistically significant levels) when the minimum electron energy for cyclotron resonance with hydrogen band waves is low (Emin = 0.6–1.0 MeV), whereas it is more often observed when the minimum electron energy for cyclotron resonance with helium band waves is slightly larger (Emin = 1.0–2.5 MeV). This is indicative of the warm plasma effects for waves approaching the He+gyrofrequency. We further show that most precipitation events had energies > 0.7–1.0 MeV, consistent with the estimated minimum energy (Emin ∼ 0.6 − 2.5 MeV) of cyclotron resonance with the observed EMIC waves during the majority of these events. However, 4 out of the 12 detected precipitation events cannot be explained by electron quasi‐linear scattering by the observed EMIC waves, and 12 out of 20 theoretically expected precipitation events were not detected by POES, suggesting the possibility of nonlinear effects likely present near the magnetic equator, or warm plasma effects, and/or narrowly localized bursts of EMIC waves.more » « less
-
Abstract Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere.more » « less
-
Relativistic electron scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms for >1 MeV electron flux depletion in the Earth's radiation belts. Resonant electron interaction with EMIC waves is traditionally described by quasi-linear diffusion equations, although spacecraft observations often report EMIC waves with intensities sufficiently large to trigger nonlinear resonant interaction with electrons. An important consequence of such nonlinear interaction is the resonance broadening effect due to high wave amplitudes. In this study, we quantify this resonance broadening effect in electron pitch-angle diffusion rates. We show that resonance broadening can significantly increase the pitch-angle range of EMIC-scattered electrons. This increase is especially important for ∼1 MeV electrons, where, without the resonance broadening, only those near the loss cone (with low fluxes) can resonate with EMIC waves.more » « less
-
Abstract Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to theforce bunchingeffect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation.more » « less