The physical fidelity of turbulence models can benefit from a partial resolution of fluctuations, but doing so often comes with an increase in computational cost. To explore this trade-off in the context of wall-bounded flows, this paper introduces a framework for turbulence-resolving integral simulations (TRIS) with the goal of efficiently resolving the largest motions using a two-dimensional, three-component representation of the flow defined by instantaneous wall-normal integrals of velocity and pressure. Self-sustaining turbulence with qualitatively realistic large-scale structures is demonstrated for TRIS on an open-channel (half-channel) flow configuration using moment-of-momentum integral equations derived from Navier–Stokes with relatively simple closure approximations. Evidence from direct numerical simulations (DNS) suggests that TRIS can theoretically resolve$$35\,\%{-}40\,\%$$of the turbulent skin friction enhancement for friction Reynolds numbers between$$180$$and$$5200$$, without a noticeable decrease or increase as a function of Reynolds number. The current implementation of TRIS can match this resolution while simulating one flow through time in$${\sim}1$$minute on a single processor, even for very large Reynolds numbers. The framework facilitates a detailed apples-to-apples comparison of predicted statistics against data from DNS. Comparisons at friction Reynolds numbers of$$395$$and$$590$$show that TRIS generates a relatively accurate representation of the flow, while highlighting discrepancies that demonstrate a need for improving the closure models. The present results for open-channel flow represent a proof of concept for TRIS as a new approach for wall-bounded turbulence modelling, motivating extension to more general flow configurations such as boundary layers on immersed objects.
more »
« less
Direct numerical simulations of turbulent pipe flow up to
Well-resolved direct numerical simulations (DNS) have been performed of the flow in a smooth circular pipe of radius$$R$$and axial length$$10{\rm \pi} R$$at friction Reynolds numbers up to$$Re_\tau =5200$$using the pseudo-spectral code OPENPIPEFLOW. Various turbulence statistics are documented and compared with other DNS and experimental data in pipes as well as channels. Small but distinct differences between various datasets are identified. The friction factor$$\lambda$$overshoots by$$2\,\%$$and undershoots by$$0.6\,\%$$the Prandtl friction law at low and high$$Re$$ranges, respectively. In addition,$$\lambda$$in our results is slightly higher than in Pirozzoliet al.(J. Fluid Mech., vol. 926, 2021, A28), but matches well the experiments in Furuichiet al.(Phys. Fluids, vol. 27, issue 9, 2015, 095108). The log-law indicator function, which is nearly indistinguishable between pipe and channel up to$$y^+=250$$, has not yet developed a plateau farther away from the wall in the pipes even for the$$Re_\tau =5200$$cases. The wall shear stress fluctuations and the inner peak of the axial turbulence intensity – which grow monotonically with$$Re_\tau$$– are lower in the pipe than in the channel, but the difference decreases with increasing$$Re_\tau$$. While the wall value is slightly lower in the channel than in the pipe at the same$$Re_\tau$$, the inner peak of the pressure fluctuation shows negligible differences between them. The Reynolds number scaling of all these quantities agrees with both the logarithmic and defect-power laws if the coefficients are properly chosen. The one-dimensional spectrum of the axial velocity fluctuation exhibits a$$k^{-1}$$dependence at an intermediate distance from the wall – also seen in the channel. In summary, these high-fidelity data enable us to provide better insights into the flow physics in the pipes as well as the similarity/difference among different types of wall turbulence.
more »
« less
- Award ID(s):
- 2031650
- PAR ID:
- 10476487
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 956
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
-
Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$.more » « less
-
Abstract Letfbe an$$L^2$$-normalized holomorphic newform of weightkon$$\Gamma _0(N) \backslash \mathbb {H}$$withNsquarefree or, more generally, on any hyperbolic surface$$\Gamma \backslash \mathbb {H}$$attached to an Eichler order of squarefree level in an indefinite quaternion algebra over$$\mathbb {Q}$$. Denote byVthe hyperbolic volume of said surface. We prove the sup-norm estimate$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform$$\varphi $$of eigenvalue$$\lambda $$on such a surface, we prove that$$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.more » « less
-
This study explores heat and turbulent modulation in three-dimensional multiphase Rayleigh–Bénard convection using direct numerical simulations. Two immiscible fluids with identical reference density undergo systematic variations in dispersed-phase volume fractions,$$0.0 \leq \varPhi \leq 0.5$$, and ratios of dynamic viscosity,$$\lambda _{\mu }$$, and thermal diffusivity,$$\lambda _{\alpha }$$, within the range$$[0.1\unicode{x2013}10]$$. The Rayleigh, Prandtl, Weber and Froude numbers are held constant at$$10^8$$,$$4$$,$$6000$$and$$1$$, respectively. Initially, when both fluids share the same properties, a 10 % Nusselt number increase is observed at the highest volume fractions. In this case, despite a reduction in turbulent kinetic energy, droplets enhance energy transfer to smaller scales, smaller than those of single-phase flow, promoting local mixing. By varying viscosity ratios, while maintaining a constant Rayleigh number based on the average mixture properties, the global heat transfer rises by approximately 25 % at$$\varPhi =0.2$$and$$\lambda _{\mu }=10$$. This is attributed to increased small-scale mixing and turbulence in the less viscous carrier phase. In addition, a dispersed phase with higher thermal diffusivity results in a 50 % reduction in the Nusselt number compared with the single-phase counterpart, owing to faster heat conduction and reduced droplet presence near walls. The study also addresses droplet-size distributions, confirming two distinct ranges dominated by coalescence and breakup with different scaling laws.more » « less
An official website of the United States government

