skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Effects of side-wall air cooling on solar thermoelectric generation with high aspect-ratio, V-shaped P/N couples
Solar thermoelectric generators (STEGs) often require long thermoelectric (TE) legs and efficient cooling at the cold side to increase the temperature difference across TE legs and, thus, the power output. We investigate the effects of direct side-wall air cooling of TE legs on the power output of STEGs fabricated with high aspect-ratio as well as V-shaped p-type and n-type TE couples without additional heat sinks. Wire-type metallic TE materials are welded together to create V-shape TE leg arrays without additional electrodes and attached to a ceramic plate with a solar absorber on top to complete the STEG. The power generation performance of the STEG is investigated with varying wind speed under concentrated solar irradiation. Finite element simulation is performed to further analyze the heat transfer and thermoelectric performance. We find that although sidewall air cooling helps to keep the cold-side temperature cooler in both natural and forced convection regimes, it can also lower the hot-side temperature to reduce the net temperature difference and, thus, the power output and efficiency. Partial thermal insulation of TE couples can further enhance the power output under forced air convection by keeping the hot side temperature higher. The developed STEG achieves a maximum power density of 230 μW/cm2 and a system efficiency of 0.023% under 10 suns with natural convection. The low efficiency was mainly due to the low ZT of the metallic TE materials used and the unoptimized leg length. Our simulation shows that the system efficiency can be improved to 2.8% with state-of-the-art Bi2Te3 alloys at an optimal leg length.  more » « less
Award ID(s):
1905571
PAR ID:
10476532
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
21
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermoelectric (TE) waste heat recovery has attracted significant attention over the past decades, owing to its direct heat-to-electricity conversion capability and reliable operation. However, methods for application-specific, system-level TE design have not been thoroughly investigated. This work provides detailed design optimization strategies and exergy analysis for TE waste heat recovery systems. To this end, we propose the use of TE system equipped on the exhaust of a gas turbine power plant for exhaust waste heat recovery and use it as a case study. A numerical tool has been developed to solve the coupled charge and heat current equations with temperature-dependent material properties and convective heat transfer at the interfaces with the exhaust gases at the hot side and with the ambient air at the heat sink side. Our calculations show that at the optimum design with 50% fill factor and 6 mm leg thickness made of state-of-the-art Bi2Te3 alloys, the proposed system can reach power output of 10.5 kW for the TE system attached on a 2 m-long, 0.5 × 0.5 m2-area exhaust duct with system efficiency of 5% and material cost per power of 0.23 $/W. Our extensive exergy analysis reveals that only 1% of the exergy content of the exhaust gas is exploited in this heat recovery process and the exergy efficiency of the TE system can reach 8% with improvement potential of 85%.

     
    more » « less
  2. Abstract

    Data centers are witnessing an unprecedented increase in processing and data storage, resulting in an exponential increase in the servers’ power density and heat generation. Data center operators are looking for green energy efficient cooling technologies with low power consumption and high thermal performance. Typical air-cooled data centers must maintain safe operating temperatures to accommodate cooling for high power consuming server components such as CPUs and GPUs. Thus, making air-cooling inefficient with regards to heat transfer and energy consumption for applications such as high-performance computing, AI, cryptocurrency, and cloud computing, thereby forcing the data centers to switch to liquid cooling. Additionally, air-cooling has a higher OPEX to account for higher server fan power. Liquid Immersion Cooling (LIC) is an affordable and sustainable cooling technology that addresses many of the challenges that come with air cooling technology. LIC is becoming a viable and reliable cooling technology for many high-power demanding applications, leading to reduced maintenance costs, lower water utilization, and lower power consumption. In terms of environmental effect, single-phase immersion cooling outperforms two-phase immersion cooling. There are two types of single-phase immersion cooling methods namely, forced and natural convection. Here, forced convection has a higher overall heat transfer coefficient which makes it advantageous for cooling high-powered electronic devices. Obviously, with natural convection, it is possible to simplify cooling components including elimination of pump. There is, however, some advantages to forced convection and especially low velocity flow where the pumping power is relatively negligible. This study provides a comparison between a baseline forced convection single phase immersion cooled server run for three different inlet temperatures and four different natural convection configurations that utilize different server powers and cold plates. Since the buoyancy effect of the hot fluid is leveraged to generate a natural flow in natural convection, cold plates are designed to remove heat from the server. For performance comparison, a natural convection model with cold plates is designed where water is the flowing fluid in the cold plate. A high-density server is modeled on the Ansys Icepak, with a total server heat load of 3.76 kW. The server is made up of two CPUs and eight GPUs with each chip having its own thermal design power (TDPs). For both heat transfer conditions, the fluid used in the investigation is EC-110, and it is operated at input temperatures of 30°C, 40°C, and 50°C. The coolant flow rate in forced convection is 5 GPM, whereas the flow rate in natural convection cold plates is varied. CFD simulations are used to reduce chip case temperatures through the utilization of both forced and natural convection. Pressure drop and pumping power of operation are also evaluated on the server for the given intake temperature range, and the best-operating parameters are established. The numerical study shows that forced convection systems can maintain much lower component temperatures in comparison to natural convection systems even when the natural convection systems are modeled with enhanced cooling characteristics.

     
    more » « less
  3. Thermoelectric active cooling uses nontraditional thermoelectric materials with high thermal conductivity, high thermoelectric power factor, and relatively low figure of merit (ZT) to transfer large heat flows from a hot object to a cold heat sink. However, prior studies have not considered the influence of external thermal resistances associated with the heat sinks or contacts, making it difficult to design active cooling thermal systems or compare the use of low-ZT and high-ZT materials. Here, we perform a non-dimensionalized analysis of thermoelectric active cooling under forced heat flow boundary conditions, including arbitrary external thermal resistances. We identify the optimal electrical currents to minimize the heat source temperature and find the crossover heat flows at which low-ZT active cooling leads to lower source temperatures than high-ZT and even ZT→+∞ thermoelectric refrigeration. These optimal parameters are insensitive to the thermal resistance between the heat source and thermoelectric materials, but depend strongly on the heat sink thermal resistance. Finally, we map the boundaries where active cooling yields lower source temperatures than thermoelectric refrigeration. For currently considered active cooling materials, active cooling with ZT < 0.1 is advantageous compared to ZT→+∞ refrigeration for dimensionless heat sink thermal conductances larger than 15 and dimensionless source powers between 1 and 100. Thus, our results motivate further investigation of system-level thermoelectric active cooling for applications in electronics thermal management. 
    more » « less
  4. Future advancements in three-dimensional (3D) electronics require robust thermal management methodology. Thermoelectric coolers (TECs) are reliable and solid-state heat pumping devices with high cooling capacity that can meet the requirements of emerging 3D microelectronic devices. Here, we first provide the design of TECs for electronics cooling using a computational model and then experimentally validate the main predictions. Key device parameters such as device thickness, leg density, and contact resistance were studied to understand their influence on the performance of TECs. Our results show that it is possible to achieve high cooling power density through optimization of TE leg height and packing density. Scaling of TECs is shown to provide ultra-high cooling power density. 
    more » « less
  5. Owing to the dramatic increase in IT power density and energy consumption, the data center (DC) sector has started adopting thermally- and energy-efficient liquid cooling methods. This study examines a single-phase direct-to-chip liquid cooling approach for three high-heat-density racks, utilizing two liquid-to-air (L2A) cooled coolant distribution units (CDUs) and a combined total heat load of 128 kW. An experimental setup was developed to test different types of CDUs, cooling loops, and thermal testing vehicles (TTVs) for different operating conditions. IR images and the collected data were used to investigate the effect of air recirculation between cold and hot aisle containments on the CDU’s performance and stability of supply air temperature (SAT). Three different types of cooling loops (X, Y, and Z) were characterized thermally and hydraulically. Results show that Type Y has the lowest cold plate thermal resistance and pressure drop, among others. In a later test that included a single rack at a heat load of 53 kW and a single CDU, the heat capture ratio for fluid was found to be 94%. Experiments show that using blanking panels on the back of the racks limits hot air recirculation and maintains a steady SAT in the cold aisle. Finally, the CDU performance was evaluated at a high heat load for the three racks at 128 kW, and the average cooling capacity of the units is 58.6 kW, and the effectiveness values for CDU 1 and CDU 2 are 0.83 and 0.82, respectively. 
    more » « less