DNA is not only a carrier of genetic information, but also a versatile structural tool for the engineering and self‐assembling of nanostructures. In this regard, the DNA template has dramatically enhanced the scalability, programmability, and functionality of the self‐assembled DNA nanostructures. These capabilities provide opportunities for a wide range of biomedical applications in biosensing, bioimaging, drug delivery, and disease therapy. In this review, the importance and advantages of DNA for programming and fabricating of DNA nanostructures are first highlighted. The recent progress in design and construction of DNA nanostructures are then summarized, including DNA conjugated nanoparticle systems, DNA‐based clusters and extended organizations, and DNA origami‐templated assemblies. An overview on biomedical applications of the self‐assembled DNA nanostructures is provided. Finally, the conclusion and perspectives on the self‐assembled DNA nanostructures are presented.
Iterons are short, repeated DNA sequences that are important for the replication of circular single-stranded DNA viruses. No tools that can reliably predict iterons are currently available. The CRUcivirus Iteron SEarch (CRUISE) tool is a computational tool that identifies iteron candidates near stem-loop structures in viral genomes.
more » « less- Award ID(s):
- 2025305
- PAR ID:
- 10476554
- Editor(s):
- Roux, Simon
- Publisher / Repository:
- ASM Press
- Date Published:
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2576-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Tile‐based DNA self‐assembly is a powerful approach for nano‐constructions. In this approach, individual DNA single strands first assemble into well‐defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower‐level structures (tiles) determine the higher‐level, final structures. In this study, we present concrete experimental data to show that higher‐level structures could, at least in the current example, also impact on the formation of lower‐level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self‐assembly and can we turn it into a useful tool for fine tuning DNA self‐assembly?
-
Abstract Chemical ligation is an important tool for the generation of synthetic DNA structures, which are used for a wide range of applications. Surprisingly, reported chemical ligation yields can range from 30 to 95 % for the same chemical activating agent and comparable DNA structures. We report a systematic study of DNA ligation by using a well‐defined bimolecular test system and a water‐soluble carbodiimide (EDC) as a phosphate‐activating agent. Our results emphasize the interplay between template‐substrate complex stability and the rates of the chemical steps of ligation, with 3′ phosphate substrates providing yields near 100 % after 24 hours for particularly favorable reaction conditions. Ligation rates are also shown to be sensitive to the identity of the base pairs flanking a nick site, with as much as threefold variation. Finally, the observation that DNA substrates are modified by EDC at rates that can be comparable with ligation rates emphasizes the importance of considering side reactions when designing protocols to maximize ligation yields.
-
Abstract Recent advances in computer-aided design tools have helped rapidly advance the development of wireframe DNA origami nanostructures. Specifically, automated tools now exist that can convert an input polyhedral mesh into a DNA origami nanostructure, greatly reducing the design difficulty for wireframe DNA origami nanostructures. However, one limitation of these automated tools is that they require a designer to fully conceptualize their intended nanostructure, which may be limited by their own preconceptions. Here, a generative design framework is introduced capable of generating many wireframe DNA origami nanostructures without the need for a predefined mesh. User-defined objectives that guide the generative process are input as either single- or multi-objective optimization problems. A graph grammar is used to both contextualize physical properties of the DNA nanostructure and control the types of generated design features. This framework allows a designer to explore upon and ideate among many generated nanostructures that comply with their own unique constraints. A web-based graphical user interface is provided, allowing users to compare various generated solutions side by side in an interactive environment. Overall, this work illustrates how a constrained generative design framework can be implemented as an assistive tool in exploring design-feature trade-offs of wireframe DNA nanostructures, resulting in novel wireframe nanostructures.
-
Abstract Customizable nanostructures built through the DNA‐origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting‐edge tools for DNA‐origami design and preparation, it remains challenging to separate structural components of an architecture built from—thus held together by—a continuous scaffold strand, which in turn limits the modularity and function of the DNA‐origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA‐origami structures. We target single‐stranded (ss) regions of DNA‐origami structures and remove them with CRISPR‐Cas12a, a hyper‐active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post‐processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a‐like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.