skip to main content


Title: Thermal Synthesis of Carbamic Acid and Its Dimer in Interstellar Ices: A Reservoir of Interstellar Amino Acids
NSF-PAR ID:
10476605
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Central Science
Volume:
9
Issue:
12
ISSN:
2374-7943
Format(s):
Medium: X Size: p. 2241-2250
Size(s):
["p. 2241-2250"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Recent observations and detections of interstellar objects (ISOs) passing through the Solar system have sparked a wave of interest into these objects. Although rare, these ISOs can be captured into bound orbits around the Sun. In this study, we investigate the novel idea of capture of ISOs into near-Earth orbits and find that a steady population of ISOs exists among the current population of near-Earth objects (NEOs). Using numerical simulations, we find that the capture of ISOs into near-Earth orbits is dominated by Jupiter that is 104 times more efficient in capturing ISOs compared to Earth. Captured ISOs are more likely to be in orbits with high eccentricities and low inclinations. We also investigate the stability of captured ISOs and find that they are generally unstable and have an average survival lifetime of ∼1 Myr, consistent with lifetime of NEOs originating from outer asteroid belt, and are ejected from the Solar system due to interactions with other planets or the Sun. Our results have important implications for understanding the population of ISOs in the Solar system and possible future detection. We find that about one to a few 50–70 m sized captured ISOs among NEOs would be detectable by Vera Rubin Observatory over its lifetime. By detecting and studying captured ISOs, we can learn about the properties and origins of such objects, and the formation and evolution of exoplanetary systems and even our Solar system.

     
    more » « less
  2. Abstract

    Interstellar neutral atoms enter the heliosphere at a relatively slow speed corresponding to the motion of the Sun through the local interstellar medium, which is approximately 25 km s−1. Neutral hydrogen atoms enter from the approximate location of the Voyager spacecraft and are eventually ionized primarily by collision with thermal solar wind ions. An earlier analysis by Hollick et al. examined low-frequency magnetic waves observed by the Voyager spacecraft from launch through 1990 that are thought to arise from the scattering of newborn interstellar pickup H+and He+. We report an analysis of Voyager 1 observations in 1991, which is the last year of high-resolution magnetic field data that are publicly available, and find 70 examples of low-frequency waves with the characteristics that suggest excitation by pickup H+and 10 examples of waves consistent with excitation by pickup He+. We find a particularly dense cluster of observations at the tail end of what is thought to be a Merged Interaction Region (MIR) that was previously studied by Burlaga & Ness using Voyager 2 observations. This is not unexpected if the MIR is followed by a large rarefaction region, as they tend to be regions of reduced turbulence levels that permit the growth of the waves over the long time periods that are generally required of this instability.

     
    more » « less