skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Interstellar Interlopers
Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3which, if uniform across the galactic disk, would imply 1025to 1026similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108and ∼109years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population.  more » « less
Award ID(s):
2303553
PAR ID:
10505380
Author(s) / Creator(s):
;
Publisher / Repository:
ARAA
Date Published:
Journal Name:
Annual Review of Astronomy and Astrophysics
Volume:
61
Issue:
1
ISSN:
0066-4146
Page Range / eLocation ID:
197 to 236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The discovery of two interstellar objects passing through the solar system, 1I/‘Oumuamua and 2I/Borisov, implies that a galactic population exists with a spatial number density of order ∼0.1 au−3. The forthcoming Rubin Observatory Legacy Survey of Space and Time (LSST) has been predicted to detect more asteroidal interstellar objects like 1I/‘Oumuamua. We apply recently developed methods to simulate a suite of galactic populations of interstellar objects with a range of assumed kinematics, albedos, and size–frequency distributions (SFDs). We incorporate these populations into the objectsInField algorithm, which simulates detections of moving objects by an arbitrary survey. We find that the LSST should detect between ∼0 and 70 asteroidal interstellar objects every year (assuming the implied number density), with sensitive dependence on the SFD slope and characteristic albedo of the host population. The apparent rate of motion on the sky—along with the associated trailing loss—appears to be the largest barrier to detecting interstellar objects. Specifically, a relatively large number of synthetic objects would be detectable by the LSST if not for their rapid sky motion (>0.°5 day−1). Therefore, algorithms that could successfully link and detect rapidly moving objects would significantly increase the number of interstellar object discoveries with the LSST (and in general). The mean diameter of detectable, inactive interstellar objects ranges from ∼50 to 600 m and depends sensitively on the SFD slope and albedo. 
    more » « less
  2. Abstract The nondetection of a coma surrounding 1I/‘Oumuamua, the first discovered interstellar object (ISO), has prompted a variety of hypotheses to explain its nongravitational acceleration. Given that forthcoming surveys are poised to identify analogs of this enigmatic object, it is prudent to devise alternative approaches to characterization. In this study, we posit X-ray spectroscopy as a surprisingly effective probe of volatile ISO compositions. Heavily ionized metals in the solar wind interact with outgassed neutrals and emit high-energy photons in a process known as charge exchange, and charge-exchange-induced X-rays from comets and planetary bodies have been observed extensively in our solar system. We develop a model to predict the X-ray flux of an ISO based on its chemical inventory and ephemeris. We find that while standard cometary constituents, such as H2O, CO2, CO, and dust, are best probed via optical or infrared observations, we predict strong X-ray emission generated by charge exchange with extended comae of H2and N2—species that lack strong infrared fluorescence transitions. We find that XMM-Newton would have been sensitive to charge exchange emission from 1I/‘Oumuamua during the object’s close approach to Earth, and that constraints on composition may have been feasible. We argue for follow-up X-ray observations of newly discovered ISOs with close-in perihelia. Compositional constraints on the general ISO population could reconcile the apparently self-conflicting nature of 1I/‘Oumuamua and provide insight into the earliest stages of planet formation in extrasolar systems. 
    more » « less
  3. We provide a nonspecialist overview of the current state of understanding of the structure and origin of our Solar System's transneptunian region (often called the Kuiper Belt), highlighting perspectives on planetesimal formation, planet migration, and the contextual relationship with protoplanetary disks. We review the dynamical features of the transneptunian populations and their associated differences in physical properties. We describe aspects of our knowledge that have advanced in the past two decades and then move on to current issues of research interest (which thus still have unclear resolution). ▪  The current transneptunian population consists of both implanted and primordial objects. ▪  The primordial (aka cold) population is a largely unaltered remnant of the population that formed in situ. ▪  The reason for the primordial cold population's current outer edge is unexplained. ▪  The large semimajor-axis population now dynamically detached from Neptune is critical for understanding the Solar System's history. ▪  Observational constraints on the number and orbits of distant objects remain poor. 
    more » « less
  4. Abstract Most stars are born in stellar clusters, and their protoplanetary disks, which are the birthplaces of planets, can, therefore, be affected by the radiation of nearby massive stars. However, little is known about the chemistry of externally irradiated disks, including whether or not their properties are similar to the so-far better-studied isolated disks. Motivated by this question, we present ALMA Band 6 observations of two irradiated Class II protoplanetary disks in the outskirts of the Orion Nebula Cluster to explore the chemical composition of disks exposed to (external) far-ultraviolet (FUV) radiation fields: the 216-0939 disk and the binary system 253-1536A/B, which are exposed to radiation fields of 102–103times the average interstellar radiation field. We detect lines from CO isotopologues, HCN, H2CO, and C2H toward both protoplanetary disks. Based on the observed disk-integrated line fluxes and flux ratios, we do not find significant differences between isolated and irradiated disks. The observed differences seem to be more closely related to the different stellar masses than to the external radiation field. This suggests that these disks are far enough away from the massive Trapezium stars, that their chemistry is no longer affected by external FUV radiation. Additional observations toward lower-mass disks and disks closer to the massive Trapezium stars are required to elucidate the level of external radiation required to make an impact on the chemistry of planet formation in different kinds of disks. 
    more » « less
  5. Abstract In this paper, we present an open-source software (Simulator of Asteroid Malformation Under Stress,SAMUS) that simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosities and sizes. This software solves the Navier–Stokes equations on a finite-element mesh, incorporating the centrifugal, Coriolis, self-gravitational, and tidal forces. The primary functionality is to simulate the deformation of minor bodies under the influence of tidal forces. It may therefore be used to constrain the composition and physical structure of bodies experiencing significant tidal forces, such as 99942 Apophis and 1I/‘Oumuamua. We demonstrate thatSAMUSwill be useful to constrain the material properties of Apophis during its near-Earth flyby in 2029. Depending on the material properties, Apophis may experience an area change of up to 0.5%, with similar effects on the photometric brightness. We also applySAMUSto constrain the material dynamic viscosity of 1I/‘Oumuamua, the first interstellar object discovered traversing the inner solar system. ‘Oumuamua experienced a close approach to the Sun at perihelion (q≃ 0.25 au) during which there were significant tidal forces that may have caused deformation of the body. This deformation could have lead to observable changes in the photometric light curve based on the material properties. The application ofSAMUSto produce synthetic observations which incorporate tidal deformation effects demonstrates that no deformation—an infinite dynamic viscosity—best reproduces the photometric data. While these results indicate that ‘Oumuamua did not experience significant tidal deformation, a sophisticated model incorporating nonprincipal axis rotation is necessary to conclusively analyze both ‘Oumuamua and Apophis. 
    more » « less