We present the discovery of the first millimeter afterglow of a short-duration
We present a comprehensive study of 29 short gamma-ray bursts (SGRBs) observed ≈0.8−60 days postburst using Chandra and XMM-Newton. We provide the inferred distributions of the SGRB jet opening angles and true event rates to compare against neutron star merger rates. We perform a uniform analysis and modeling of their afterglows, obtaining 10 opening angle measurements and 19 lower limits. We report on two new opening angle measurements (SGRBs 050724A and 200411A) and eight updated values, obtaining a median value of 〈
- PAR ID:
- 10476718
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 959
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 13
- Size(s):
- Article No. 13
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract γ -ray burst (SGRB) and the first confirmed afterglow of an SGRB localized by the GUANO system on Swift. Our Atacama Large Millimeter/Sub-millimeter Array (ALMA) detection of SGRB 211106A establishes an origin in a faint host galaxy detected in Hubble Space Telescope imaging at 0.7 ≲z ≲ 1.4. From the lack of a detectable optical afterglow, coupled with the bright millimeter counterpart, we infer a high extinction,A V≳ 2.6 mag along the line of sight, making this one of the most highly dust-extincted SGRBs known to date. The millimeter-band light curve captures the passage of the synchrotron peak from the afterglow forward shock and reveals a jet break at days. For a presumed redshift ofz = 1, we infer an opening angle,θ jet= (15.°5 ± 1.°4), and beaming-corrected kinetic energy of , making this one of the widest and most energetic SGRB jets known to date. Combining all published millimeter-band upper limits in conjunction with the energetics for a large sample of SGRBs, we find that energetic outflows in high-density environments are more likely to have detectable millimeter counterparts. Concerted afterglow searches with ALMA should yield detection fractions of 24%–40% on timescales of ≳2 days at rates of ≈0.8–1.6 per year, outpacing the historical discovery rate of SGRB centimeter-band afterglows. -
Abstract We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s−1magnetic field resolution. The CSs have thickness,
λ, from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10λ p in terms of local proton inertial length,λ p . We found that the current density is larger for smaller-scale CSs,J 0≈ 6 nAm−2· (λ /100 km)−0.56, but does not statistically exceed a critical value,J A , corresponding to the drift between ions and electrons of local Alvén speed. The observed trend holds in normalized units: . The CSs are statistically force-free with magnetic shear angle correlated with CS spatial scale: . The observed correlations are consistent with local turbulence being the source of proton kinetic-scale CSs in the solar wind, while the mechanisms limiting the current density remain to be understood. -
Abstract We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δ
m ≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJ andK s bands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness ( mag) and color (J −K s = 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature ( K) and luminosity ( ). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofM init= 17 ± 4M ⊙. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at to 3 × 10−4M ⊙yr−1for an assumed wind velocity ofv w = 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind. -
Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5
M ⊙and 1.2–2.0M ⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M ⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. -
Abstract We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich (
), and has an age of Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ( ) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 105neutron stars, 2.5 × 105stellar-mass black holes (BHs), and 2.2 × 104BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc−3yr−1).