skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finding Causal Gateways of Precipitation Over the Contiguous United States
Abstract Identifying regions that mediate regional propagation of atmospheric perturbations is important to assessing the susceptibility and resilience of complex hydroclimate systems. Detecting the regional gateways through causal inference, can help unravel the interplay of physical processes and inform projections of future changes. In this study, we characterize the causal interactions among nine climate regions in the contiguous United States using long‐term (1901–2018) precipitation data. The constructed causal networks reveal the cross‐regional propagation of precipitation perturbations. Results show that the Ohio Valley region acts as an atmospheric gateway for precipitation and moisture transport in the U.S., which is largely regulated by the regional convective uplift. The findings have implications for improving predicative capacity of hydroclimate modeling of regional precipitation.  more » « less
Award ID(s):
2028868 1930629
PAR ID:
10476822
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
4
ISSN:
0094-8276
Page Range / eLocation ID:
e2022GL101942
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Detecting and quantifying the global teleconnections with flash droughts (FDs) and understanding their causal relationships is crucial to improve their predictability. This study employs causal effect networks (CENs) to explore the global predictability sources of subseasonal soil moisture FDs in three regions of the United States (US): upper Mississippi, South Atlantic Gulf (SAG), and upper and lower Colorado river basins. We analyzed the causal relationships of FD events with global 2‐m air temperature, sea surface temperature, water deficit (precipitation minus evaporation), and geopotential height at 500 hPa at the weekly timescale over the warm season (April to September) from 1982 to 2018. CENs revealed that the Indian Ocean Dipole, Pacific North Atlantic patterns, Bermuda high‐pressure system, and teleconnection patterns via Rossby wave train and jet streams strongly influence FDs in these regions. Moreover, a strong link from South America suggests that atmospheric circulation forcings could affect the SAG through the low‐level atmospheric flow, reducing inland moisture transport, and leading to a precipitation deficit. Machine learning utilizing the identified causal regions and factors can well predict major FD events up to 4 weeks in advance, providing useful insights for improved subseasonal forecasting and early warnings. 
    more » « less
  2. Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced with the increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene–Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations and climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., drier or wetter, greater frequency, and/or intensity of extreme events). Central California (paleolatitude ∼ 42° N), roughly at the boundary between dry subtropical highs and mid-latitude low-pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during the PETM. Our findings, based on multi-proxy evidence within the context of model outputs, suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along central coastal California during the PETM. 
    more » « less
  3. Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced, with increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene-Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations, climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., dryer or wetter, or greater frequency and/or intensity of extreme events). Central California (paleolatitude ~42° N), roughly at the boundary between dry subtropical highs and mid-latitude low pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during PETM. Our findings based on multi-proxy evidence within the context of model output suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along the central coastal California during the PETM. 
    more » « less
  4. Abstract End of 21st‐century hydroclimate projections suggest an expansion of subtropical dry zones, with Mediterranean and Sahel regions becoming much drier. However, paleobotanical assemblage evidence from the middle Miocene (17‐12 Ma), suggests both regions were instead humid environments. Here we show that by modifying regional sea surface temperatures (SST) in an Earth System Model (CESM1.2) simulation of the middle Miocene, the increased ocean evaporation and integrated water vapor flux overrides any drying effects associated with warming‐induced land‐surface evaporation driven by atmospheric CO2concentrations. These modifications markedly reduce the bias in the model‐data comparison for this period. A vegetation model (BIOME4) forced with simulated climatologies predicts both regions were dominated by mixed forest, which is largely consistent with the paleobotanical record. This study unveils the potential for wetter subtropical Mediterranean climates associated with warming, presenting an alternative scenario from future drying projections with localized SST warming governing regional climate change. 
    more » « less
  5. The Mantaro River Basin is one of the most important regions in the central Peruvian Andes in terms of hydropower generation and agricultural production. Contributions to better understanding of the climate and hydrological dynamics are vital for this region and constitute key information to support regional water security and socioeconomic resilience. This study presents eight years of monthly isotopic precipitation information (δ18O, Dxs) collected in the Mantaro River Basin. The isotopic signals were evaluated in terms of moisture sources, including local and regional climatic parameters, to interpret their variability at monthly and interannual timescales. It is proposed that the degree of rainout upstream and the transport history of air masses, also related to regional atmospheric features, are the main factors influencing the δ18O variability. Moreover, significant correlations with precipitation amount and relative humidity imply that local processes in this region of the Andes also exert important control over isotopic variability. Two extreme regional climate events (the 2010 drought and the 2017 coastal El Niño) were evaluated to determine how regional atmospheric circulation affects the rainfall isotope variability. Based on these results, recommendations for hydroclimate studies and paleoclimate reconstructions are proposed in the context of the Mantaro River Basin. This study intends to encourage new applications considering geochemical evidence for hydrological studies over the central Andean region. 
    more » « less