This dataset contains perennial grass tiller and stolon counts
collected starting in 2012 for a long-term precipitation and
nutrient manipulation experiment at the Jornada Basin LTER site in
southern New Mexico, U.S.A. This experiment uses precipitation
shelters and irrigation treatments to manipulate water inputs, and
fertilization treatments to alter nitrogen input to 2.5 x 2.5 meter
plots in a desert grassland. Tillers and stolons of perennial
grasses were counted in each plot in 2012, 2013 and 2014. This is an
ongoing study and the dataset will be updated as needed.
more »
« less
Soil water content measurements in plots with experimentally altered precipitation and nutrient inputs at the Jornada Basin LTER site, 2011-ongoing
This dataset contains soil volumetric water content data collected
starting in 2011 for a long-term precipitation and nutrient
manipulation experiment at the Jornada Basin LTER site in southern
New Mexico, U.S.A. This experiment uses precipitation shelters and
irrigation treatments to manipulate water inputs, and fertilization
treatments to alter nitrogen input to 2.5 x 2.5 meter plots in a
desert grassland. Soil sensors are installed at surface and deep
soil layers in each plot and collect hourly averages of volumetric
water content using a time-domain reflectometry method. This dataset
contains daily averages. This is an ongoing study and the dataset
will be updated yearly.
more »
« less
- Award ID(s):
- 2025166
- PAR ID:
- 10477010
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains cover and biomass data collected starting in 2006 for a long-term precipitation and nutrient manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs, and fertilization treatments to alter nitrogen input to 2.5 x 2.5 meter plots in a desert grassland. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly.more » « less
-
This dataset contains perennial grass tiller and stolon counts collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Perennial grass tiller and stolon counts were made annually in each plot from 2012-2014. This is an ongoing study and the dataset will be updated as needed.more » « less
-
This dataset contains cover and biomass data collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly.more » « less
-
Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability. Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed. Obviously, one of the important areas of interest in this experiment was the effects of elevated (greater-than-average) and decreased (less-than-average) precipitation levels on soil moisture. The volumetric water content of the soil was monitored across all twelve plots, all four treatment types, and all three cover types. The record created through these monitoring activities not only noted the initial “wetting-up” of the soil after a precipitation event but also tracked the “drying-down” of the soil after the event. The water content of the soil and its associated storage capacity could then provide a frame of reference in which changes in the physiological properties of our two target tree species, such as water potential and sapflow rate, could be interpreted.more » « less