skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perennial grass tiller and stolon density in plots with experimentally altered precipitation and nutrient inputs at the Jornada Basin LTER site, 2012-2014
This dataset contains perennial grass tiller and stolon counts collected starting in 2012 for a long-term precipitation and nutrient manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs, and fertilization treatments to alter nitrogen input to 2.5 x 2.5 meter plots in a desert grassland. Tillers and stolons of perennial grasses were counted in each plot in 2012, 2013 and 2014. This is an ongoing study and the dataset will be updated as needed.  more » « less
Award ID(s):
2025166
PAR ID:
10477013
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains perennial grass tiller and stolon counts collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Perennial grass tiller and stolon counts were made annually in each plot from 2012-2014. This is an ongoing study and the dataset will be updated as needed. 
    more » « less
  2. This dataset contains cover and biomass data collected starting in 2012 for a long-term precipitation variability manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. The study was designed to assess the effect of interannual variability in precipitation on average aboveground net primary productivity (ANPP) in Chihuahuan Desert grasslands. The study began in 2009, has five annual precipitation treatments, and contains 50 plots (10 per treatment). This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs to 2.5 x 2.5 meter plots in a desert grassland. There are high, low, and ambient (control) precipitation variability treatments. Ambient plots receive natural precipitation each year, while variability treatments alternate between 20% and 180% (high variability), or 50% and 150% (low variability) of ambient precipitation each year. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly. 
    more » « less
  3. This dataset contains cover and biomass data collected starting in 2006 for a long-term precipitation and nutrient manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs, and fertilization treatments to alter nitrogen input to 2.5 x 2.5 meter plots in a desert grassland. Plant cover measurements are made annually in each plot, from which biomass or net primary production are derived. This is an ongoing study and the dataset will be updated yearly. 
    more » « less
  4. This dataset contains soil volumetric water content data collected starting in 2011 for a long-term precipitation and nutrient manipulation experiment at the Jornada Basin LTER site in southern New Mexico, U.S.A. This experiment uses precipitation shelters and irrigation treatments to manipulate water inputs, and fertilization treatments to alter nitrogen input to 2.5 x 2.5 meter plots in a desert grassland. Soil sensors are installed at surface and deep soil layers in each plot and collect hourly averages of volumetric water content using a time-domain reflectometry method. This dataset contains daily averages. This is an ongoing study and the dataset will be updated yearly. 
    more » « less
  5. {"Abstract":["This study investigated the question, "Does climate change\n affect vegetation and seed bank composition in desert\n grasslands?" The work was done in the Sevilleta National\n Wildlife Refuge, New Mexico, USA, in in the Extreme Drought in\n Grassland Experiment (EDGE). Vegetation and seed bank species\n composition were recorded in black grama (Bouteloua eriopoda) and\n blue grama (B. gracilis) grasslands at Sevilleta. At each site, two\n rainfall manipulations and ambient controls were established in 2013\n (n=10). Treatments included extreme drought (-66% rainfall\n reduction) and delayed monsoon (precipitation captured during\n July-August and reapplied during September-October). Aboveground\n species composition was assessed and composite soil samples were\n collected in 2017, five years after the experiment started. Seed\n bank composition was evaluated using the seedling emergence method.\n Rainfall treatments increased aboveground species richness at both\n sites, and seed bank richness only in the blue grama community.\n Vegetation cover was reduced by both rainfall manipulations, but\n seed bank density increased or remained the same compared with\n controls. In aboveground vegetation, cover of annual and perennial\n forbs increased, and dominant perennial grasses decreased. In the\n soil seed bank, species composition was similar among all treatments\n and was dominated by annual and perennial forbs. The seed bank was\n more resistant to drought than aboveground vegetation. Because seed\n banks enhance long-term community stability, their drought\n resistance plays an important role in maintaining ecosystem\n processes during and following drought in these grassland\n communities."]} 
    more » « less