There is enormous flexibility potential in the power consumption of the majority of electric loads. This flexibility can be harnessed to obtain services for managing the grid: with carefully designed decision rules in place, power consumption for the population of loads can be ramped up and down, just like charging and discharging a battery, without any significant impact to consumers' needs. The concept is called Demand Dispatch, and the grid resource obtained from this design virtual energy storage (VES). In order to deploy VES, a balancing authority is faced with two challenges: 1. how to design local decision rules for each load given the target aggregate power consumption (distributed control problem), and 2. how to coordinate a portfolio of resources to maintain grid balance, given a forecast of net-load (resource allocation problem).Rather than separating resource allocation and distributed control, in this paper the two problems are solved simultaneously using a single convex program. The joint optimization model is cast as a finite-horizon optimal control problem in a mean-field setting, based on the new KLQ optimal control approach proposed recently by the authors.The simplicity of the proposed control architecture is remarkable: With a large portfolio of heterogeneous flexible resources, including loads such as residential water heaters, commercial water heaters, irrigation, and utility-scale batteries, the control architecture leads to a single scalar control signal broadcast to every resource in the domain of the balancing authority. Keywords: Smart grids, demand dispatch, distributed control, controlled Markov chains.
more »
« less
Load-Level Control Design for Demand Dispatch With Heterogeneous Flexible Loads
Over the past decade, there has been significant progress on the science of load control for the creation of virtual energy storage. This is an alternative to demand response, and it is termed demand dispatch. Distributed control is used to manage millions of flexible loads to modify the power consumption of the aggregation, which can be ramped up and down, just like discharging and charging a battery. A challenge with distributed control is heterogeneity of the population of loads, which complicates control at the aggregate level. It is shown in this article that additional control at each load in the population can result in a far aggregate model. The local control is designed to flatten resonances and produce approximately all-pass response. Analysis is based on mean-field control for the heterogeneous population; the mean-field model is only justified because of the additional local control introduced in this article. Theory and simulations indicate that the resulting input--output dynamics of the aggregate has a nearly flat input--output response: the behavior of an ideal, multi-GW battery system.
more »
« less
- Award ID(s):
- 1935389
- PAR ID:
- 10477030
- Editor(s):
- Andrea Serrani
- Publisher / Repository:
- IEEE Transactions on Control Systems Technology
- Date Published:
- Journal Name:
- IEEE Transactions on Control Systems Technology
- Edition / Version:
- 1
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1063-6536
- Page Range / eLocation ID:
- 1830 to 1843
- Subject(s) / Keyword(s):
- Demand Dispatch Power Systems
- Format(s):
- Medium: X Size: 1.3MB Other: pdf
- Size(s):
- 1.3MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As new grid edge technologies emerge—such as rooftop solar panels, battery storage, and controllable water heaters—quantifying the uncertainties of building load forecasts is becoming more critical. The recent adoption of smart meter infrastructures provided new granular data streams, largely unavailable just ten years ago, that can be utilized to better forecast building-level demand. This paper uses Bayesian Structural Time Series for probabilistic load forecasting at the residential building level to capture uncertainties in forecasting. We use sub-hourly electrical submeter data from 120 residential apartments in Singapore that were part of a behavioral intervention study. The proposed model addresses several fundamental limitations through its flexibility to handle univariate and multivariate scenarios, perform feature selection, and include either static or dynamic effects, as well as its inherent applicability for measurement and verification. We highlight the benefits of this process in three main application areas: (1) Probabilistic Load Forecasting for Apartment-Level Hourly Loads; (2) Submeter Load Forecasting and Segmentation; (3) Measurement and Verification for Behavioral Demand Response. Results show the model achieves a similar performance to ARIMA, another popular time series model, when predicting individual apartment loads, and superior performance when predicting aggregate loads. Furthermore, we show that the model robustly captures uncertainties in the forecasts while providing interpretable results, indicating the importance of, for example, temperature data in its predictions. Finally, our estimates for a behavioral demand response program indicate that it achieved energy savings; however, the confidence interval provided by the probabilistic model is wide. Overall, this probabilistic forecasting model accurately measures uncertainties in forecasts and provides interpretable results that can support building managers and policymakers with the goal of reducing energy use.more » « less
-
Editor-in-Chief: George Yin (Ed.)This paper presents approaches to mean-field control, motivated by distributed control of multi-agent systems. Control solutions are based on a convex optimization problem, whose domain is a convex set of probability mass functions (pmfs). The main contributions follow: 1. Kullback-Leibler-Quadratic (KLQ) optimal control is a special case, in which the objective function is composed of a control cost in the form of Kullback-Leibler divergence between a candidate pmf and the nominal, plus a quadratic cost on the sequence of marginals. Theory in this paper extends prior work on deterministic control systems, establishing that the optimal solution is an exponential tilting of the nominal pmf. Transform techniques are introduced to reduce complexity of the KLQ solution, motivated by the need to consider time horizons that are much longer than the inter-sampling times required for reliable control. 2. Infinite-horizon KLQ leads to a state feedback control solution with attractive properties. It can be expressed as either state feedback, in which the state is the sequence of marginal pmfs, or an open loop solution is obtained that is more easily computed. 3. Numerical experiments are surveyed in an application of distributed control of residential loads to provide grid services, similar to utility-scale battery storage. The results show that KLQ optimal control enables the aggregate power consumption of a collection of flexible loads to track a time-varying reference signal, while simultaneously ensuring each individual load satisfies its own quality of service constraints.more » « less
-
Systems often face constraints at multiple levels. For example, in coordinating a collection of thermostatically controlled loads to provide grid services, the controller must ensure temperature constraints for each load (local constraints) and distribution network constraints (global constraints) are satisfied. In this paper, we leverage invariant sets to ensure safe coordination of systems with both local and global constraints. Specifically, we develop a method for constructing a controlled invariant set for a collection of subsystems, modeled as transition systems, to ensure they indefinitely satisfy the constraints, based on cycles in individual transition systems. Then, we develop a control algorithm that keeps the state inside the maximal controlled invariant set.We apply these algorithms to a demand response problem, specifically, the tracking of a power trajectory (e.g., a frequency regulation signal) by a population of homogeneous air conditioners. The algorithm simultaneously maintains local temperature requirements and aggregate power consumption limits, ensuring the control is nondisruptive to consumers and benign to the distribution network.more » « less
-
null (Ed.)We propose a decentralized algorithm to help reduce demand-supply imbalance in a power grid by varying the demand from loads, just like charging and discharging a battery. The algorithm ensures strict bounds on the consumers' quality of service (QoS) by constraining the bandwidth of demand variation. A model-predictive-control formulation is adopted to compute local decisions at the loads. The algorithm is decentralized in the sense that loads do not communicate with one another. Instead, loads coordinate using local measurements of the grid frequency, which provide information about global demand-supply imbalance. It is envisioned that consumers will be recruited through long-term contracts, aided by the QoS guarantees provided by the proposed scheme. Simulation results show that loads are able to reduce frequency deviations while maintaining QoS constraints and that the performance of the algorithm scales well with the number of loads. Closed-loop stability is established under some assumptions.more » « less
An official website of the United States government

