skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 1, 2024

Title: Quasi-Stochastic Approximation: Design Principles With Applications to Extremum Seeking Control
From the summary: The goal of this article is two-fold: survey the emerging theory of QSA (quasi-stochastic approximation) and its implication to design, and explain the intimate connection between QSA and ESC (extremum seeking control). The contributions go in two directions: ESC algorithm design can benefit by applying concepts from QSA theory, and the broader research community with interest in gradient-free optimization can benefit from the control theoretic approach inherent to ESC.  more » « less
Award ID(s):
1935389
NSF-PAR ID:
10477050
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Control Systems Magazine
Date Published:
Journal Name:
IEEE Control Systems
Volume:
43
Issue:
5
ISSN:
1066-033X
Page Range / eLocation ID:
111 to 136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional perturbation-based extremum seeking control (ESC) employs a slow time-dependent periodic signal to find an optimum of an unknown plant. To ensure stability of the overall system, the ESC parameters are selected such that there is sufficient time-scale separation between the plant and the ESC dynamics. This approach is suitable when the plant operates at a fixed time-scale. In case the plant slows down during operation, the time-scale separation can be violated. As a result, the stability and performance of the overall system can no longer be guaranteed. In this paper, we propose an ESC for periodic systems, where the external time-dependent dither signal in conventional ESC is replaced with the periodic signals present in the plant, thereby making ESC time-invariant in nature. The advantage of using a state-based dither is that it inherently contains the information about the rate of the rhythmic task under control. Thus, in addition to maintaining time-scale separation at different plant speeds, the adaptation speed of a time-invariant ESC automatically changes, without changing the ESC parameters. We illustrate the effectiveness of the proposed time-invariant ESC with a Van der Pol oscillator example and present a stability analysis using averaging and singular perturbation theory. 
    more » « less
  2. The recent framework for spectrum sharing in the 3.5 GHz band allows for Environment Sensing Capability operators (ESCs) to measure spectrum occupancy so as to enable commercial use of this spectrum when federal incumbent users are not present. Each ESC will contract with one or more Spectrum Access Systems (SASs) to provide spectrum occupancy data. Commercial firms using the band will in turn contract with a SAS to determine when it can access the spectrum. Initially, the decisions of which ESC and SAS to partner with will likely be based on long-term contracts. In this paper, we consider an alternative framework, in which an ESC sells its spectrum management information via a spot market so that from periodto- period a commercial user can select a different ESC from which to acquire spectrum measurements. We develop a game theoretic model to analyze such a market and show that using such a spot market may better enable multiple commercial firms to operate in a given spectrum band. We also show that this increased competition may not benefit consumer surplus unless firms adopt a non-stationary strategy profile. 
    more » « less
  3. Abstract

    This work describes the results from wind tunnel experiments performed to maximize wind plant total power output using wake steering via closed loop yaw angle control. The experimental wind plant consists of nine turbines arranged in two different layouts; both are two dimensional arrays and differ in the positioning of the individual turbines. Two algorithms are implemented to maximize wind plant power: Log‐of‐Power Extremum Seeking Control (LP‐ESC) and Log‐of‐Power Proportional Integral Extremum Seeking Control (LP‐PIESC). These algorithms command the yaw angles of the turbines in the upstream row. The results demonstrate that the algorithms can find the optimal yaw angles that maximize total power output. The LP‐PIESC reached the optimal yaw angles much faster than the LP‐ESC. The sensitivity of the LP‐PIESC to variations in free stream wind speed and initial yaw angles is studied to demonstrate robustness to variations in wind speed and unknown yaw misalignment.

     
    more » « less
  4. null (Ed.)
    Unmanned aerial vehicles (UAVs) suffer from sensor drifts in GPS denied environments, which can lead to potentially dangerous situations. To avoid intolerable sensor drifts in the presence of GPS spoofing attacks, we propose a safety constrained control framework that adapts the UAV at a path re-planning level to support resilient state estimation against GPS spoofing attacks. The attack detector is used to detect GPS spoofing attacks and provides a switching criterion between the robust control mode and emergency control mode. An attacker location tracker (ALT) is developed to track the attacker's location and estimate the spoofing device's output power by the unscented Kalman filter (UKF) with sliding window outputs. Using the estimates from ALT, we design an escape controller (ESC) based on the model predictive controller (MPC) such that the UAV escapes from the effective range of the spoofing device within the escape time. 
    more » « less
  5. Abstract

    Even highly motivated undergraduates drift off their STEM career pathways. In large introductory STEM classes, instructors struggle to identify and support these students. To address these issues, we developed co‐redesign methods in partnership with disciplinary experts to create high‐structure STEM courses that better support students and produce informative digital event data. To those data, we applied theory‐ and context‐relevant labels to reflect active and self‐regulated learning processes involving LMS‐hosted course materials, formative assessments, and help‐seeking tools. We illustrate the predictive benefits of this process across two cycles of model creation and reapplication. In cycle 1, we used theory‐relevant features from 3 weeks of data to inform a prediction model that accurately identified struggling students and sustained its accuracy when reapplied in future semesters. In cycle 2, we refit a model with temporally contextualized features that achieved superior accuracy using data from just two class meetings. This modelling approach can produce durable learning analytics solutions that afford scaled and sustained prediction and intervention opportunities that involve explainable artificial intelligence products. Those same products that inform prediction can also guide intervention approaches and inform future instructional design and delivery.Practitioner notesWhat is already known about this topic

    Learning analytics includes an evolving collection of methods for tracing and understanding student learning through their engagements with learning technologies.

    Prediction models based on demographic data can perpetuate systemic biases.

    Prediction models based on behavioural event data can produce accurate predictions of academic success, and validation efforts can enrich those data to reflect students' self‐regulated learning processes within learning tasks.

    What this paper adds

    Learning analytics can be successfully applied to predict performance in an authentic postsecondary STEM context, and the use of context and theory as guides for feature engineering can ensure sustained predictive accuracy upon reapplication.

    The consistent types of learning resources and cyclical nature of their provisioning from lesson to lesson are hallmarks of high‐structure active learning designs that are known to benefit learners. These designs also provide opportunities for observing and modelling contextually grounded, theory‐aligned and temporally positioned learning events that informed prediction models that accurately classified students upon initial and later reapplications in subsequent semesters.

    Co‐design relationships where researchers and instructors work together toward pedagogical implementation and course instrumentation are essential to developing unique insights for feature engineering and producing explainable artificial intelligence approaches to predictive modelling.

    Implications for practice and/or policy

    High‐structure course designs can scaffold student engagement with course materials to make learning more effective and products of feature engineering more explainable.

    Learning analytics initiatives can avoid perpetuation of systemic biases when methods prioritize theory‐informed behavioural data that reflect learning processes, sensitivity to instructional context and development of explainable predictors of success rather than relying on students' demographic characteristics as predictors.

    Prioritizing behaviours as predictors improves explainability in ways that can inform the redesign of courses and design of learning supports, which further informs the refinement of learning theories and their applications.

     
    more » « less