The recent framework for tiered spectrum sharing in the 3.5 GHz band establishes rules in which multiple firms called Environment Sensing Capability operators (ESCs) may measure spectrum occupancy and sell these measurements to other firms to help facilitate spectrum access. Motived by this we consider a scenario in which two spectrum access firms (SAs) seeks to access a shared band of spectrum and must in turn purchase spectrum measurements from one of two ESCs. Given the measurements they purchase, the SA firms then compete on price to serve customers in a shared band of spectrum. We study how differences in the quality and price of the spectrum measurements impact the resulting market equilibrium between the SAs and find that having different qualities of measurements available to different SAs can lead to better economic welfare.
more »
« less
Spot Markets for Spectrum Measurements
The recent framework for spectrum sharing in
the 3.5 GHz band allows for Environment Sensing Capability
operators (ESCs) to measure spectrum occupancy so as to enable
commercial use of this spectrum when federal incumbent users
are not present. Each ESC will contract with one or more
Spectrum Access Systems (SASs) to provide spectrum occupancy
data. Commercial firms using the band will in turn contract with
a SAS to determine when it can access the spectrum. Initially,
the decisions of which ESC and SAS to partner with will likely
be based on long-term contracts. In this paper, we consider
an alternative framework, in which an ESC sells its spectrum
management information via a spot market so that from periodto-
period a commercial user can select a different ESC from
which to acquire spectrum measurements. We develop a game
theoretic model to analyze such a market and show that using
such a spot market may better enable multiple commercial firms
to operate in a given spectrum band. We also show that this
increased competition may not benefit consumer surplus unless
firms adopt a non-stationary strategy profile.
more »
« less
- PAR ID:
- 10178794
- Date Published:
- Journal Name:
- IEEE DySPAN
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Citizens Broadband Radio Service (CBRS) recently adopted in the U.S. enables commercial users to share spectrum with incumbent federal users. This sharing can be assisted by Environmental Sensing Capability operators (ESCs), that monitor the spectrum occupancy to determine when the use of the spectrum will not harm incumbents. An important aspect of the CBRS is that it enables two tiers of spectrum access by commercial users. The higher tier corresponds to a spectrum access (SA) firm that purchases a priority access license (PAL) in a competitive auction. The PAL holder obtains dedicated licensed access to a portion of the spectrum when the incumbent is not present. The lower tier, referred to as generalized Authorized Access (GAA), does not request a PAL and is similar to unlicensed access, in which multiple firms share a portion of the spectrum. Entry and investment in such a market introduces a number of new dimensions. Should an entrant bid for a PAL? How does the availability of a PAL impact their investment decisions? We develop a game-theoretic model to study these issues in which entrant SAs may bid in a PAL auction and decide on their investment levels and then compete downstream for customers.more » « less
-
Dynamic spectrum sharing has emerged as a promising solution to address the spectrum scarcity challenge. Currently, the FCC has designated several Spectrum Access Systems (SAS) administrators to deploy their SAS that coordinates the usage of the certificated shared band(s) such as the 3.55-3.7 GHz CBRS band. The SAS ensures that the incumbent’s access to the shared band is guaranteed while also granting commercial users access rights when the incumbents are not present. However, explicitly sharing the spectrum band(s) information among participants raises privacy concerns. Certain participants, such as curious SAS administrators, have the ability to deduce the confidential operational patterns of the incumbents through the Environmental Sensing Capability (ESC) or Incumbent Informing Capability (IIC) notifications. Additionally, a curious SAS administrator may obtain the client’s operational information of other SAS administrators throughout the process of inter-SAS coordination. We propose Pri-Share, a novel privacy-preserving spectrum sharing paradigm that tailors the threshold-based private set union (PSU) and homomorphic encryption (HE) techniques to address the aforementioned privacy problems. Specifically, it enables all parties to jointly compute a unified spectrum allocation plan to resolve the potential conflicts between different parties while safeguarding the confidentiality of each stakeholder’s spectrum requirements and usage. Pri-Share also ensures that while a curious participant might ascertain the usage of a particular spectrum band, they are unable to deduce the precise identity of the party utilizing it. Besides, Pri-Share adheres to the key spectrum allocation regulations outlined by FCC (part 96), such as assurance of access rights for various priority levels. Our implementation result shows that Pri-Share can be achieved with notable computational and communication efficiency,more » « less
-
As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment.more » « less
-
We analyze the prioritized sharing between an added value Mobile Virtual Network Operator (MVNO) and multiple Mobile Network Operators (MNOs). An added value MVNO is one which earns added revenue from wireless users in addition to the revenue it directly collects for providing them wireless service. To offer service, an MVNO needs to contract with one or more MNOs to utilize their networks. Agreeing on such a contract requires the MNOs to consider the impact on their revenue from allowing the MVNO to enter the market as well as the possibility that other MNOs will cooperate. To further protect their customers, the MNOs may prioritize their direct customers over those of the MVNO. We establish a multi-stage game to analyze the equilibrium decisions of the MVNO, MNOs, and users in such a setting. In particular, we characterize the condition under which the MVNO can collaborate with the MNOs. The results show that the MVNO tends to cooperate with the MNOs when the band resources are limited and the added value is significant. When there is significant difference in band resources among the MNOs, the MVNO first considers cooperating with the MNO with a smaller band. We also consider the case when the users also have access to unlicensed spectrum.more » « less