skip to main content

Title: The Quasar Feedback Survey: characterizing CO excitation in quasar host galaxies

We present a comprehensive study of the molecular gas properties of 17 Type 2 quasars at z < 0.2 from the Quasar Feedback Survey (L$_{\rm [O~{\small III}]}$ > 1042.1 $\rm ergs^{-1}$), selected by their high [O iii] luminosities and displaying a large diversity of radio jet properties, but dominated by LIRG-like galaxies. With these data, we are able to investigate the impact of AGN and AGN feedback mechanisms on the global molecular interstellar medium. Using Atacama Pathfinder EXperiment and ALMA ACA observations, we measure the total molecular gas content using the CO(1-0) emission and homogeneously sample the carbon monoxide (CO) spectral line energy distributions, observing CO transitions (Jup  = 1, 2, 3, 6, 7). We observe high r21 ratios (r21  = L’CO(2-1)/L’CO(1-0)) with a median r21  = 1.06, similar to local (U)LIRGs (with r21 ∼ 1) and higher than normal star-forming galaxies (with r21 ∼ 0.65). Despite the high r21 values, for the seven targets with the required data, we find low excitation in CO(6-5) & CO(7-6) (r61 and r62 < 0.6 in all but one target), unlike high-redshift quasars in the literature, which are far more luminous and show higher line ratios. The ionized gas traced by [O iii] exhibits systematically higher velocities than the molecular gas traced by CO. We conclude that any effects of quasar feedback (e.g. via outflows and radio jets) do not have a significant instantaneous impact on the global molecular gas content and excitation and we suggest that it only occurs on more localized scales.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4420-4439
["p. 4420-4439"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

    more » « less
  2. We investigate the molecular gas content of z  ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C  I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C  II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z  ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust  ∼ 47 K and an optical depth τ ν  = 0.2 at the [C  II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C  I ], or [C  II ] emission yields mass estimates of the entire sample in the range M H2  ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C  II ], [C  I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H  > 10 4 cm −3 ) clouds with a column density N H  ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0  ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z  ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn. 
    more » « less

    The triggering mechanism for the most luminous, quasar-like active galactic nuclei (AGN) remains a source of debate, with some studies favouring triggering via galaxy mergers, but others finding little evidence to support this mechanism. Here, we present deep Isaac Newton Telescope/Wide Field Camera imaging observations of a complete sample of 48 optically selected type 2 quasars – the QSOFEED sample ($L_{\rm [O\, \small {III}]}\gt 10^{8.5}\, \mathrm{L}_{\odot }$; z < 0.14). Based on visual inspection by eight classifiers, we find clear evidence that galaxy interactions are the dominant triggering mechanism for quasar activity in the local universe, with 65$^{+6}_{-7}$ per cent of the type 2 quasar hosts showing morphological features consistent with galaxy mergers or encounters, compared with only 22$^{+5}_{-4}$ per cent of a stellar-mass- and redshift-matched comparison sample of non-AGN galaxies – a 5σ difference. The type 2 quasar hosts are a factor of 3.0$^{+0.5}_{-0.8}$ more likely to be morphologically disturbed than their matched non-AGN counterparts, similar to our previous results for powerful 3CR radio AGN of comparable [O iii] emission-line luminosity and redshift. In contrast to the idea that quasars are triggered at the peaks of galaxy mergers as the two nuclei coalesce, and only become visible post-coalescence, the majority of morphologically disturbed type 2 quasar sources in our sample are observed in the pre-coalescence phase (61$^{+8}_{-9}$ per cent). We argue that much of the apparent ambiguity that surrounds observational results in this field is a result of differences in the surface brightness depths of the observations, combined with the effects of cosmological surface brightness dimming.

    more » « less

    Molecular gas flows are analysed in 14 cluster galaxies (BCGs) centred in cooling hot atmospheres. The BCGs contain $10^{9}\!-\!10^{11}~\rm M_\odot$ of molecular gas, much of which is being moved by radio jets and lobes. The molecular flows and radio jet powers are compared to molecular outflows in 45 active galaxies within z < 0.2. We seek to understand the relative efficacy of radio, quasar, and starburst feedback over a range of active galaxy types. Molecular flows powered by radio feedback in BCGs are ∼10–1000 times larger in extent compared to contemporary galaxies hosting quasar nuclei and starbursts. Radio feedback yields lower flow velocities but higher momenta compared to quasar nuclei, as the molecular gas flows in BCGs are usually ∼10–100 times more massive. The product of the molecular gas mass and lifting altitude divided by the AGN or starburst power – a parameter referred to as the lifting factor – exceeds starbursts and quasar nuclei by 2–3 orders of magnitude, respectively. When active, radio feedback is generally more effective at lifting gas in galaxies compared to quasars and starburst winds. The kinetic energy flux of molecular clouds generally lies below and often substantially below a few per cent of the driving power. We find tentatively that star formation is suppressed in BCGs relative to other active galaxies, perhaps because these systems rarely form molecular discs that are more impervious to feedback and are better able to promote star formation.

    more » « less
  5. null (Ed.)
    We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J CO excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn. 
    more » « less