skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Virtual Access to STEM Careers: Two Preliminary Investigations
Virtual Access to STEM Careers (VASC) is a technology-rich, inquiry and problem-based curriculum designed to expose and stimulate student interest in marine, environmental, computer, and geological sciences. Intended for 3rd through 5th grade students, VASC builds academic momentum at the intermediate level to prepare students for STEM opportunities later in middle school and high school. Our program is aligned with “Next Generation Science Standards” and “Common Core State Standards” and immerses students in rigorous, high-interest learning modules where students are introduced to and take on the roles of different STEM occupations. We are specifically developing and testing virtual reality-based modules that place students in a coastal environment where they learn about the sea turtle life-cycle. Students also practice the types of measurements and conservation tasks that park rangers and marine scientists regularly perform. The investigations focused on the design of a user interface that meets the needs of students and their teachers. We collected feedback on user interface design and knowledge gained by the users from the simulation. Additionally, we compared two different virtual reality head-mounted displays; i) HTC Vive and ii) Oculus Quest 2, to identify the pros and cons of each technology in future classroom settings. Our investigations yielded valuable information about how instructions should be presented to users, how the interface should provide immediate feedback for user error, how surveys should be administered, what equipment is most efficient for transporting and setting up large scale experiments in schools, and what types of interactions students and teachers want to experience in VASC.  more » « less
Award ID(s):
1850430
NSF-PAR ID:
10477211
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Chen, J.Y.C.; Fragomeni, G.
Publisher / Repository:
Springer, Cham
Date Published:
Journal Name:
Lecture notes in computer science
Volume:
13318
ISSN:
1611-3349
Subject(s) / Keyword(s):
["Virtual reality\nHCI\nUsability testing\nK-12 STEM education"]
Format(s):
Medium: X
Location:
Virtual
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  
    more » « less
  2. Given the strategic importance of the semiconductor manufacturing sector and the CHIPS Act impact on microelectronics, it is more imperative than ever to train the next generation of scientists and engineers in the field. However, this is a challenging feat since nanofabrication education uses hands-on cleanroom facilities. Since cleanrooms are expensive, have access constraints due to safety concerns, and offer limited instructional space, class sizes and outreach events are limited. To complement instruction in nanotechnology education, there is some open- or educational-access software, which is computer-based and focuses only on training for individual equipment, not on the typical workflow for device fabrication. The objective of this work was to develop an accessible virtual reality ecosystem that provides an immersive education and outreach on device nanofabrication that is user-friendly for a broad range of audiences. At the George Washington University (GWU), a virtual reality cleanroom prototype has been developed. It consists of a 45-minute gameplay module that covers the process flow for the fabrication of micro-scale resistors, from sample preparation to electrical characterization. We also performed a mixed methods study to investigate how 5 students in a nanoelectronics course utilized this virtual reality cleanroom prototype and what changes they recommend to improve its user interface and learner experience. The study population for this work-in-progress consisted of students enrolled in a nanoelectronics course at GWU during the 2022-2023 school year. Students taking this course can be undergraduate (junior or senior) or graduate (masters or PhD). The research questions for this study were 1) what is the user experience with the virtual reality cleanroom prototype, 2) what challenges, if any, did students experience, and 3) what changes did students recommend to improve the virtual reality cleanroom prototype learner experience? Preliminary results indicate that the students found the virtual reality cleanroom simulator helpful in repeatedly exploring the cleanroom space and the nanofabrication process flow in a safe way, thus developing more confidence in utilizing the actual cleanroom facility. The results of this study will provide insight on the design of future modules with more complicated levels and device process flows. Moreover, the study could inform the development of other virtual reality simulators for other lab activities. The improved usability of the proposed software could provide students in large classes or attending online programs in electrical and computer engineering, as well as K-12 students participating in nanotechnology-related outreach events, the opportunity to conduct realistic process workflows, learn first-hand about nanofabrication, and practice using a nanofabrication lab via trial and error in a safe virtual environment. 
    more » « less
  3. Abstract  
    more » « less
  4. Surviving Extinction is an interactive, adaptive, digital learning experience through which students learn about the history of vertebrate evolution over the last 350 million years. This experience is self-contained, providing students with immediate feedback. It is designed to be used in a wide range of educational settings from junior high school (∼12 years old) to university level. Surviving Extinction ’s design draws on effective aspects of existing virtual field trip-based learning experiences. Most important among these is the capacity for students to learn through self-directed virtual explorations of simulated historical ecosystems and significant modern-day geologic field sites. Surviving Extinction also makes significant innovations beyond what has previously been done in this area, including extensive use of gamified elements such as collectibles and hidden locations. Additionally, it blends scientifically accurate animations with captured media via a user interface that presents an attractive, engaging, and immersive experience. Surviving Extinction has been field-tested with students at the undergraduate, high school, and pre-high school levels to assess how well it achieves the intended learning outcomes. In all settings we found significant gains pre- to post-activity on a knowledge survey with medium to large effect sizes. This evidence of learning is further supported with data from the gamified elements such as the number of locations discovered and total points earned. Surviving Extinction is freely available for use and detailed resources for educators are provided. It is appropriate for a range of undergraduate courses that cover the history of life on Earth, including ones from a biology, ecology, or geology perspective and courses for either majors or non-majors. Additionally, at the high school level, Surviving Extinction is directly appropriate to teaching adaptation, one of the disciplinary core ideas in the Next Generation Science Standards. Beyond providing this resource to the educational community, we hope that the design ideas demonstrated in Surviving Extinction will influence future development of interactive digital learning experiences. 
    more » « less
  5. null (Ed.)
    Physical activity (PA) is a health-protective factor with multiple benefits for school-age children, yet only 22% of children and adolescents living in the United States (United States) accrue the recommended amount of moderate to vigorous PA. Given the prevalence of insufficient PA among children, promoting and providing PA opportunities during the school day, especially when integrated into the curriculum and linked to the learning standards, is essential for children. The purpose of this paper is to describe the procedure for the development of a school-based PA program using an integrated approach through the modified intervention mapping protocol (IMP). A total of 22 physical education teachers and 167 children from five different elementary schools were involved in the process. The procedure includes the Self-Determination Theory (SDT) that provides a theoretical framework that plays a vital role in motivating students to have a physically active lifestyle. This study applied SDT and IMP to develop and pilot a PA intervention called Project SMART using an integrative community participatory approach. As a pilot PA intervention, Project SMART is an online educational game where the students navigate a virtual journey across the United States A class’s aggregate PA propels the students on their journey, where standards-based modules are unlocked to achieve STEM (science, technology, engineering, and math) and social-emotional learning outcomes while gaining an understanding of the importance of health behaviors and opportunities to habitually engage in healthy decision-making with the support of their peers. Although initially labor intensive for the researchers, the process of tailoring the intervention to the children’s contextual and cultural needs has implications for all theoretically grounded and evidence-based PA interventions. 
    more » « less