skip to main content


This content will become publicly available on February 1, 2025

Title: Impact of strongback on structure with varying damper and stiffness irregularity arrangements
Structures susceptible to soft story mechanisms are particularly vulnerable to earthquakes because damage concentrated at a single story can lead to premature failure of the structure. The strongback, a stiff vertical spine pinned at the structure’s base and running its height, has been proposed as a way to impose a more uniform pattern of floor displacements and prevent soft story mechanisms. However, changes in the impact of strongbacks on the performance of structures remain unclear when considering vertical stiffness irregularities at different positions along the height of a structure and different arrangements of energy dissipation devices in a structure. This study aims to address these gaps through an extensive parametric experimental investigation varying the location of vertical stiffness irregularities and the arrangement of dampers in a small-scale four-story elastic structure with and without a strongback. For this study, each configuration of the structure is loaded with shake table-produced seismic ground motion. The results of this study show that, regardless of which story a stiffness irregularity is located, the strongback significantly reduces the maximum story drift in the structure. Furthermore, with the strongback, the maximum story and roof drift are insensitive to damper position and distribution, whereas, without it, the damper position significantly impacts the structural performance. The strongback’s ability to protect against soft story vertical irregularities, regardless of their locations, and the insensitivity of structural performance to damper arrangement when utilizing a strongback, presents promising new options for structural design, architectural design, and remediation efforts.  more » « less
Award ID(s):
1940197
NSF-PAR ID:
10477243
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Constructional Steel Research
Volume:
213
Issue:
C
ISSN:
0143-974X
Page Range / eLocation ID:
108333
Subject(s) / Keyword(s):
["Structural Engineering","Strongback","Soft story mechanism","Damper arrangement","Stiffness irregularity","Experimental"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Loss of operation or devastating damage to buildings and industrial structures, as well as equipment housed in them, has been observed due to earthquake-induced vibrations. A common source of operational downtime is due to the performance reduction of vital equipment, which are sensitive to the total transmitted acceleration. A well-known method of protecting such equipment is seismic isolation of the equipment itself (or a group of equipment), as opposed to the entire structure due to the lower cost of implementation. The first objective of this dissertation is assessing a rolling isolation system (RIS) based on existing design guidelines for telecommunications equipment. A discrepancy is observed between the required response spectrum (RRS) and the one and only accelerogram recommended in the guideline. Several filters are developed to generate synthetic accelerograms that are compatible with the RRS. The generated accelerograms are used for probabilistic assessment of a RIS that is acceptable per the guideline. This assessment reveals large failure probability due to displacement demands in excess of the displacement capacity of the RIS. When the displacement demands on an isolation system are in excess of its capacity, impacts result in spikes in transmitted acceleration. Therefore, the second objective of this dissertation is to design impact prevention/mitigation mechanisms. A dual-mode system is proposed where the behavior changes when the displacement exceeds a predefined threshold. A new piecewise optimal control approach is developed and applied to find the best possible mechanism for the region beyond the threshold. By utilizing the designed curves obtained from the proposed optimal control procedure, a Kelvin-Voigt device is tuned for illustrative purposes. On the other hand, the preference for protecting equipment decreases as the earthquake intensity increases. In extreme seismic loading, the response mitigation of the primary structure (i.e., life safety and collapse prevention) is of greater concern than protecting isolated equipment. Therefore, the third objective of this dissertation is to develop an innovative dual-mode system that can behave as equipment isolation under low to moderate seismic loading and passively transition to behave as a vibration absorber for the primary structure under extreme seismic loading. To reduce the computational cost of simulating a large linear elastic structure with nonlinear attachments (i.e., equipment isolation with cubic hardening nonlinearity), a reduced order modeling method is introduced that can capture the behavior of such nonlinear coupled systems. The method is applied to study the feasibility of dual-mode vibration isolation/absorber. To this end, nonlinear transmissibility curves for the roof displacement and isolated mass total acceleration are developed from the steady-state responses of dual-mode systems using the harmonic balanced method. The final objective of this dissertation is to extend the reduced order modeling method developed for linear elastic structure with nonlinear attachment to inelastic structures (without attachments). The new inelastic model condensation (IMC) method uses the modal properties of the full structural model (in the elastic range) to construct a linear reduced order model in conjunction with a hysteresis model to capture the hysteretic inter-story restoring forces. The parameters of these hysteretic forces are easily tuned, in order to fit the inelastic behavior of the condensed structure to that of the full model under a variety of simple loading scenarios. The fidelity of structural models condensed in this way is demonstrated via simulation for different ground motion intensities on three different building structures with various heights. The simplicity, accuracy, and efficiency of this approach could significantly alleviate the computational burden of performance-based earthquake engineering. 
    more » « less
  2. Many structural systems are susceptible to soft-story instabilities during earthquakes that are lifethreatening and can lead to damage that is too costly to repair. One way to mitigate damage and reduce the potential for soft-story instability is through the addition of an elastic spine that distributes drifts across the height of a structure. One such system is the strongback braced frame, which replaces one side of a buckling-restrained braced frame with a strongback truss. With the strongback providing vertical continuity, an expanded design space is made available for the arrangement of buckling-restrained braces (BRBs) or other energy-dissipating members. An example of this expanded design space is that a designer could opt to not include BRBs at every story. Methods for proportioning the energy-dissipating resistance in strongback braced frames have been proposed. However, most methods don't allow exploitation of the full design space. The objective of this work is to propose and evaluate a potential method of proportioning energy-dissipating members for arbitrary vertical arrangements within strongback braced frames. For a prototypical building, the BRBs are designed in various configurations using existing methods and with the new method. Nonlinear time history analyses of the resulting designs coupled with a rigid strongback are performed and the results are compared. The impacts of overstrength and P-Δ effects are quantified. The findings support the proposed method of BRB design that enables exploration of the wide design space made available by the strongback. 
    more » « less
  3. The folding motion of an origami structure can be stopped at a non-flat position when two of its facets bind together. Such facet-binding will induce self-locking so that the overall origami structure can stay at a pre-specified configuration without the help of additional locking devices or actuators. This research investigates the designs of self-locking origami structures and the locking-induced kinematical and mechanical properties. We show that incorporating multiple cells of the same type but with different geometry could significantly enrich the self-locking origami pattern design. Meanwhile, it offers remarkable programmability to the kinematical properties of the selflocking origami structures, including the number and position of locking points, and the deformation range. Self-locking will also affect the mechanical characteristics of the origami structures. Experiments and finite element simulations reveal that the structural stiffness will experience a sudden jump with the occurrence of self-locking, inducing a piecewise stiffness profile. The results of this research would provide design guidelines for developing self-locking origami structures and metamaterials with excellent kinematical and stiffness characteristics, with many potential engineering applications. 
    more » « less
  4. Large-scale multi-directional real-time hybrid simulations (RTHS) are used to assess the maximum considered earthquake (MCE) seismic performance of a 40-story steel building equipped with supplemental nonlinear viscous dampers. These dampers are placed between outrigger trusses and the perimeter columns of a building that was part of the inventory for the California Tall Building Initiative (TBI) PEER study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the building while the experimental substructure consists of a full scale nonlinear viscous damper. Other dampers in the structure are analytically modelled using an online explicit model updating scheme where the physical damper is used to obtain the parameters of the analytical damper models during the RTHS. The displacement, residual drift, and ductility demand are found to be reduced by adding the dampers to the outrigger, but only in the direction of the plane of the outriggers. Higher modes, including torsional modes, contribute to the 3-D seismic response. 
    more » « less
  5. Abstract

    The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal‐mean radius of maximum wind speed at 1‐km height. As in a previous study, the axisymmetric TKE decreases with height in the eyewall, but more abruptly in simulations without TKE advection. The largest TKE budget terms are shear generation and dissipation, though variability in vertical turbulent transport and buoyancy production affect the change in the azimuthal‐mean TKE distribution. The general relationships between the TKE budget terms are consistent across different radii, regardless of storm intensity. In terms of the asymmetric distribution in the eyewall, TKE is maximized in the front‐left quadrant where the sea surface temperature (SST) is highest and is minimized in the rear‐right quadrant where the SST is the lowest. In the category‐5 simulation, the height of the TKE maximum varies significantly in the eyewall between quadrants and is between ∼400 m in the rear‐right quadrant and ∼1,000 m in the front‐left quadrant. When TKE advection is included in the simulations, the maximum eyewall TKE values are downwind compared to the simulations without TKE advection.

     
    more » « less