skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropical Cyclones on Tidally Locked Rocky Planets: Dependence on Rotation Period
Abstract Tropical cyclones occur over the Earth’s tropical oceans, with characteristic genesis regions and tracks tied to the warm ocean surface that provide energy to sustain these storms. The study of tropical cyclogenesis and evolution on Earth has led to the development of environmental favorability metrics that predict the strength of potential storms from the local background climate state. Simulations of the gamut of transiting terrestrial exoplanets orbiting late-type stars may offer a test of this Earth-based understanding of tropical cyclogenesis. Previous work has demonstrated that tropical cyclones are likely to form on tidally locked terrestrial exoplanets with intermediate rotation periods of ∼8–10 days. In this study, we test these expectations using ExoCAM simulations with both a sufficient horizontal resolution of 0.°47 × 0.°63 required to permit tropical cyclogenesis along with a thermodynamically active slab ocean. We conduct simulations of tidally locked and ocean-covered Earth-sized planets orbiting late-type M dwarf stars with varying rotation periods from 4–16 days in order to cross the predicted maximum in tropical cyclogenesis. We track tropical cyclones that form in each simulation and assess their location of maximum wind, evolution, and maximum wind speeds. We compare the resulting tropical cyclone locations and strengths to predictions based on environmental favorability metrics, finding good agreement between Earth-based metrics and our simulated storms with a local maximum in both tropical cyclone frequency and intensity at a rotation period of 8 days. Our results suggest that environmental favorability metrics used for tropical cyclones on Earth may also be applicable to temperate tidally locked Earth-sized rocky exoplanets with abundant surface liquid water.  more » « less
Award ID(s):
1945113
PAR ID:
10521559
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We examine the properties of ∼50 000 rotational variables from the ASAS-SN survey using distances, stellar properties, and probes of binarity from Gaia DR3 and the SDSS APOGEE survey. They have higher amplitudes and span a broader period range than previously studied Kepler rotators. We find they divide into three groups of main sequence stars (MS1, MS2s, MS2b) and four of giants (G1/3, G2, G4s, and G4b). MS1 stars are slowly rotating (10–30 d), likely single stars with a limited range of temperatures. MS2s stars are more rapidly rotating (days) single stars spanning the lower main sequence up to the Kraft break. There is a clear period gap (or minimum) between MS1 and MS2s, similar to that seen for lower temperatures in the Kepler samples. MS2b stars are tidally locked binaries with periods of days. G1/3 stars are heavily spotted, tidally locked RS CVn stars with periods of 10s of days. G2 stars are less luminous, heavily spotted, tidally locked sub-subgiants with periods of ∼10 d. G4s stars have intermediate luminosities to G1/3 and G2, slow rotation periods (approaching 100 d), and are almost certainly all merger remnants. G4b stars have similar rotation periods and luminosities to G4s, but consist of sub-synchronously rotating binaries. We see no difference in indicators for the presence of very wide binary companions between any of these groups and control samples of photometric twin stars built for each group. 
    more » « less
  2. Abstract In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation. 
    more » « less
  3. Abstract The conditions associated with tropical cyclones undergoing downshear reformation are explored for the North Atlantic basin from 1998 to 2020. These storms were compared to analog tropical cyclones with similar intensity, vertical wind shear, and maximum potential intensity, but did not undergo downshear reformation. Storm-centered, shear-relative composites were generated using ERA5 and GridSat-B1 data. Downshear reformation predominately occurs for tropical cyclones of tropical storm intensity embedded in moderate vertical wind shear. A comparison between composites suggests that reformed storms are characterized by greater low-level and midtropospheric relative humidity downshear, larger surface latent heat fluxes downshear and left of shear, and larger low-level equivalent potential temperatures and CAPE right of shear. These factors increase thermodynamic favorability, building a reservoir of potential energy and decreasing dry air entrainment, promoting sustained convection downshear, and favoring the development of a new center. Significance StatementThe development of a new low-level circulation center in tropical cyclones that replaces the original center, called downshear reformation, can affect the structure and intensity of storms, representing a challenge in forecasting tropical cyclones. While there have been a handful of case studies on downshear reformation, this study aims to more comprehensively understand the conditions that favor downshear reformation by comparing a large set of North Atlantic tropical cyclones that underwent reformation with a similar set of tropical cyclones that did not undergo reformation. Tropical cyclones that undergo reformation have a moister environment, larger surface evaporation, and higher low-level instability in specific regions that help sustain deep, downshear convection that favors the development of a new center. 
    more » « less
  4. Extratropical cyclones develop in regions of enhanced baroclinicity and progress along climatological storm tracks. Numerous studies have noted an influence of terrestrial snow cover on atmospheric baroclinicity. However, these studies have less typically examined the role that continental snow cover extent and changes anticipated with anthropogenic climate change have on cyclones’ intensities, trajectories, and precipitation characteristics. Here, we examined how projected future poleward shifts in North American snow extent influence extratropical cyclones. We imposed 10th, 50th, and 90th percentile values of snow retreat between the late 20th and 21st centuries as projected by 14 Coupled Model Intercomparison Project Phase Five (CMIP5) models to alter snow extent underlying 15 historical cold-season cyclones that tracked over the North American Great Plains and were faithfully reproduced in control model cases, providing a comprehensive set of model runs to evaluate hypotheses. Simulations by the Advanced Research version of the Weather Research and Forecast Model (WRF-ARW) were initialized at four days prior to cyclogenesis. Cyclone trajectories moved on average poleward (μ = 27 +/− σ = 17 km) in response to reduced snow extent while the maximum sea-level pressure deepened (μ = −0.48 +/− σ = 0.8 hPa) with greater snow removed. A significant linear correlation was observed between the area of snow removed and mean trajectory deviation (r2 = 0.23), especially in mid-winter (r2 = 0.59), as well as a similar relationship for maximum change in sea-level pressure (r2 = 0.17). Across all simulations, 82% of the perturbed simulation cyclones decreased in average central sea-level pressure (SLP) compared to the corresponding control simulation. Near-surface wind speed increased, as did precipitation, in 86% of cases with a preferred phase change from the solid to liquid state due to warming, although the trends did not correlate with the snow retreat magnitude. Our results, consistent with prior studies noting some role for the enhanced baroclinity of the snow line in modulating storm track and intensity, provide a benchmark to evaluate future snow cover retreat impacts on mid-latitude weather systems. 
    more » « less
  5. Abstract Proposals to use technology to cool sea surface temperatures have received attention for the potential application of weakening a tropical cyclone ahead of landfall. Here, application of an ocean-mixing aware maximum potential intensity theory finds that artificial ocean cooling could drastically weaken tropical cyclones over high sea surface temperature and deep ocean mixed layer environments, especially for fast storm motion speeds. In contrast, realistic mesoscale numerical simulations reveal that massive regions - the largest evaluated here contains a volume of 2.1 × 104 km3and a surface area of 2.6 × 105km2- of artificially cooled ocean waters could weaken a tropical cyclone two days before landfall by 15% but only under the most ideal atmospheric and oceanic conditions. Thus, the fundamental theory provides an unreachable upper-bound that cannot be attained even by expending vast resources. 
    more » « less