- Award ID(s):
- 2108251
- NSF-PAR ID:
- 10413457
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 6
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 251
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Determination of the Starspot Covering Fraction as a function of Stellar Age from Observational DataAbstract The association of starspots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with starspot coverage. Since younger stars spin faster and are more magnetically active, assessing whether starspot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here we analyze the starspot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30,000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power law best fits. We find that starspot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power law fits emerge for each stellar type. Using bin averages, we then find that the starspot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 days and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant starspot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 days exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest.more » « less
-
ABSTRACT We examine the properties of ∼50 000 rotational variables from the ASAS-SN survey using distances, stellar properties, and probes of binarity from Gaia DR3 and the SDSS APOGEE survey. They have higher amplitudes and span a broader period range than previously studied Kepler rotators. We find they divide into three groups of main sequence stars (MS1, MS2s, MS2b) and four of giants (G1/3, G2, G4s, and G4b). MS1 stars are slowly rotating (10–30 d), likely single stars with a limited range of temperatures. MS2s stars are more rapidly rotating (days) single stars spanning the lower main sequence up to the Kraft break. There is a clear period gap (or minimum) between MS1 and MS2s, similar to that seen for lower temperatures in the Kepler samples. MS2b stars are tidally locked binaries with periods of days. G1/3 stars are heavily spotted, tidally locked RS CVn stars with periods of 10s of days. G2 stars are less luminous, heavily spotted, tidally locked sub-subgiants with periods of ∼10 d. G4s stars have intermediate luminosities to G1/3 and G2, slow rotation periods (approaching 100 d), and are almost certainly all merger remnants. G4b stars have similar rotation periods and luminosities to G4s, but consist of sub-synchronously rotating binaries. We see no difference in indicators for the presence of very wide binary companions between any of these groups and control samples of photometric twin stars built for each group.
-
Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (
Kp = 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainT eff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M = 1.24 ± 0.05M ⊙,R = 1.34 ± 0.02R ⊙, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars. -
Abstract The distribution of white dwarf rotation periods provides a means for constraining angular momentum evolution during the late stages of stellar evolution, as well as insight into the physics and remnants of double degenerate mergers. Although the rotational distribution of low-mass white dwarfs is relatively well constrained via asteroseismology, that of high-mass white dwarfs, which can arise from either intermediate-mass stellar evolution or white dwarf mergers, is not. Photometric variability in white dwarfs due to rotation of a spotted star is rapidly increasing the sample size of high-mass white dwarfs with measured rotation periods. We present the discovery of 22.4 minute photometric variability in the light curve of EGGR 156, a strongly magnetic, ultramassive white dwarf. We interpret this variability as rapid rotation, and our data suggest that EGGR 156 is the remnant of a double degenerate merger. Finally, we calculate the rate of period change in rapidly-rotating, massive, magnetic WDs due to magnetic dipole radiation. In many cases, including EGGR 156, the period change is not currently detectable over reasonable timescales, indicating that these WDs could be very precise clocks. For the most highly-magnetic, rapidly-rotating massive WDs, such as ZTF J1901+1450 and RE J0317−853, the period change should be detectable and may help constrain the structure and evolution of these exotic white dwarfs.
-
Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results. In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆ = 0.588 ± 0.024 M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025 M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆ = 0.560 ± 0.028 M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π = 23.244 ± 0.024, d Gaia = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology.more » « less