skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maestro: A Gamified Platform for Teaching AI Robustness
Although the prevention of AI vulnerabilities is critical to preserve the safety and privacy of users and businesses, educational tools for robust AI are still underdeveloped worldwide. We present the design, implementation, and assessment of Maestro. Maestro is an effective open-source game-based platform that contributes to the advancement of robust AI education. Maestro provides goal-based scenarios where college students are exposed to challenging life-inspired assignments in a competitive programming environment. We assessed Maestro's influence on students' engagement, motivation, and learning success in robust AI. This work also provides insights into the design features of online learning tools that promote active learning opportunities in the robust AI domain. We analyzed the reflection responses (measured with Likert scales) of 147 undergraduate students using Maestro in two quarterly college courses in AI. According to the results, students who felt the acquisition of new skills in robust AI tended to appreciate highly Maestro and scored highly on material consolidation, curiosity, and maestry in robust AI. Moreover, the leaderboard, our key gamification element in Maestro, has effectively contributed to students' engagement and learning. Results also indicate that Maestro can be effectively adapted to any course length and depth without losing its educational quality.  more » « less
Award ID(s):
2039634
PAR ID:
10477443
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
15816 to 15824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction. 
    more » « less
  2. This paper examines the design and evaluation of Large Language Model (LLM) tutors for Python programming, focusing on personalization that accommodates diverse student backgrounds. It highlights the challenges faced by socioeconomically disadvantaged students in computing courses and proposes LLM tutors as a solution to provide inclusive educational support. The study explores two LLM tutors, Khanmigo and CS50.ai, assessing their ability to offer personalized learning experiences. By employing a focus group methodology at a public minority-serving institution, the research evaluates how these tutors meet varied educational goals and adapt to students’ diverse needs. The findings underscore the importance of advanced techniques to tailor interactions and integrate programming tools based on students' progress. This research contributes to the understanding of educational technologies in computing education and provides insights into the design and implementation of LLM tutors that effectively support equitable student success. 
    more » « less
  3. With increasing interest in computer‐assisted educa‐ tion, AI‐integrated systems become highly applicable with their ability to adapt based on user interactions. In this context, this paper focuses on understanding and analysing first‐year undergraduate student responses to an intelligent educational system that applies multi‐agent reinforcement learning as an AI tutor. With human–computer interaction at the centre, we discuss principles of interface design and educational gamification in the context of multiple years of student observations, student feedback surveys and focus group interviews. We show positive feedback from the design methodology we discuss as well as the overall process of providing automated tutoring in a gamified virtual environment. We also discuss students' thinking in the context of gamified educational systems, as well as unexpected issues that may arise when implementing such systems. Ultimately, our design iterations and analysis both offer new insights for practical implementation of computer‐assisted educational systems, focusing on how AI can augment, rather than replace, human intelligence in the classroom. Practitioner notesWhat is already known about this topicAI‐integrated systems show promise for personalizing learning and improving student education.Existing research has shown the value of personalized learner feedback.Engaged students learn more effectively.What this paper addsStudent opinions of and responses to an HCI‐based personalized educational system.New insights for practical implementation of AI‐integrated educational systems informed by years of student observations and system improvements.Qualitative insights into system design to improve human–computer interaction in educational systems.Implications for practice and/or policyActionable design principles for computer‐assisted tutoring systems derived from first‐hand student feedback and observations.Encourage new directions for human–computer interaction in educational systems. 
    more » « less
  4. This project focuses on developing three technical courses for lower-division electrical engineering education to bridge the gap between Career and Technical Education (CTE) programs in high schools, engineering programs at community colleges, and lower-division electrical engineering courses at four-year universities. The primary goal of the project is to create a seamless academic transition by providing electrical engineering students with the necessary foundational knowledge in analog and digital systems, as well as hands-on experience with laboratory measurement tools. The courses utilize industry-relevant technologies such as LabView, MATLAB, PLC programming, and ready-to-use microcontroller boards to facilitate experiential learning at lower division courses. Early exposure to these tools and systems equips students with practical skills that not only prepare them for further academic pursuits but also align them with workforce demands in industries that increasingly rely on automation, data acquisition, and real-time system controls. The success of this project is attributed to its emphasis on design and project-based learning, which fosters critical thinking and problem-solving skills essential for real-world applications. By integrating design principles early in students' educational experiences, they are better prepared to tackle complex engineering problems as they progress through their academic careers. The use of project-based learning allows students to apply theoretical knowledge to tangible, real-world projects, improving their engagement and deepening their understanding of electrical engineering concepts. Practical tools like MATLAB and microcontroller boards in entry-level courses not only motivates students to pursue engineering but also increases retention rates in STEM fields, a key metric for academic success. This project is also advocating for early exposure to hands-on technical skills as a way to better prepare students for the workforce. By focusing on skill development in both CTE programs and early college courses, students are equipped with a stronger foundation for electrical engineering careers and are more likely to succeed in upper-division coursework and beyond. The seamless integration of high school, community college, and university programs ensures that students acquire both the theoretical and practical skills necessary to be successful in an increasingly technology-driven economy. Moreover, the project's use of industry-standard tools, coupled with its focus on bridging academic gaps, provides a sustainable model for developing a skilled and versatile workforce, addressing the growing need for engineers proficient in both design and system implementation. 
    more » « less
  5. Abstract As generative AI becomes ubiquitous, writers must decide if, when, and how to incorporate generative AI into their writing process. Educators must sort through their role in preparing students to make these decisions in a quickly evolving technological landscape. We created an AI-enabled writing tool that provides scaffolded use of a large language model as part of a research study on integrating generative AI into an upper division STEM writing-intensive course. Drawing on decades of research on integrating digital tools into instruction and writing research, we discuss the framework that drove our initial design considerations and instructional resources. We then share our findings from a year of design-based implementation research during the 2023–2024 academic year. Our original instruction framework identified the need for students to understand, access, prompt, corroborate, and incorporate the generative AI use effectively. In this paper, we explain the need for students to think first, before using AI, move through good enough prompting to agentic iterative prompting, and reflect on their use at the end. We also provide emerging best practices for instructors, beginning with identifying learning objectives, determining the appropriate AI role, revising the content, reflecting on the revised curriculum, and reintroducing learning as needed. We end with an indication of our future directions. 
    more » « less