In this paper, an attack-resilient estimation algorithm is developed for linear discrete-time stochastic systems with inequality constraints on the actuator attacks and states. The proposed algorithm consists of the optimal estimation and information aggregation. The optimal estimation provides minimum-variance unbiased (MVU) estimates, and then they are projected onto the constrained space in the information aggregation step. It is shown that the estimation errors and their covariances from the proposed algorithm are less than those from the unconstrained algorithm. Moreover, we proved that the state estimation errors of the proposed estimation algorithm are practically exponentially stable. A simulation on mobile robots demonstrates the effectiveness of the proposed algorithm compared to an existing algorithm. 
                        more » 
                        « less   
                    
                            
                            Deep neural nets with fixed bias configuration
                        
                    
    
            For any given neural network architecture a permutation of weights and biases results in the same functional network. This implies that optimization algorithms used to 'train' or 'learn' the network are faced with a very large number (in the millions even for small networks) of equivalent optimal solutions in the parameter space. To the best of our knowledge, this observation is absent in the literature. In order to narrow down the parameter search space, a novel technique is introduced in order to fix the bias vector configurations to be monotonically increasing. This is achieved by augmenting a typical learning problem with inequality constraints on the bias vectors in each layer. A Moreau-Yosida regularization based algorithm is proposed to handle these inequality constraints and a theoretical convergence of this algorithm is established. Applications of the proposed approach to standard trigonometric functions and more challenging stiff ordinary differential equations arising in chemically reacting flows clearly illustrate the benefits of the proposed approach. Further application of the approach on the MNIST dataset within TensorFlow, illustrate that the presented approach can be incorporated in any of the existing machine learning libraries. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10345638
- Date Published:
- Journal Name:
- Numerical Algebra, Control and Optimization
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 2155-3289
- Page Range / eLocation ID:
- 0
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The learning speed of feed-forward neural networks is notoriously slow and has presented a bottleneck in deep learning applications for several decades. For instance, gradient-based learning algorithms, which are used extensively to train neural networks, tend to work slowly when all of the network parameters must be iteratively tuned. To counter this, both researchers and practitioners have tried introducing randomness to reduce the learning requirement. Based on the original construction of Igelnik and Pao, single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice, but the necessary theoretical justification is lacking. In this study, we begin to fill this theoretical gap. We then extend this result to the non-asymptotic setting using a concentration inequality for Monte-Carlo integral approximations. We provide a (corrected) rigorous proof that the Igelnik and Pao construction is a universal approximator for continuous functions on compact domains, with approximation error squared decaying asymptotically likeO(1/n) for the numbernof network nodes. We then extend this result to the non-asymptotic setting, proving that one can achieve any desired approximation error with high probability providednis sufficiently large. We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space, providing theoretical guarantees in both the asymptotic and non-asymptotic forms. Finally, we illustrate our results on manifolds with numerical experiments.more » « less
- 
            Multi-objective reinforcement learning (MORL) approaches have emerged to tackle many real-world problems with multiple conflicting objectives by maximizing a joint objective function weighted by a preference vector. These approaches find fixed customized policies corresponding to preference vectors specified during training. However, the design constraints and objectives typically change dynamically in real-life scenarios. Furthermore, storing a policy for each potential preference is not scalable. Hence, obtaining a set of Pareto front solutions for the entire preference space in a given domain with a single training is critical. To this end, we propose a novel MORL algorithm that trains a single universal network to cover the entire preference space scalable to continuous robotic tasks. The proposed approach, Preference-Driven MORL (PD-MORL), utilizes the preferences as guidance to update the network parameters. It also employs a novel parallelization approach to increase sample efficiency. We show that PD-MORL achieves up to 25% larger hypervolume for challenging continuous control tasks and uses an order of magnitude fewer trainable parameters compared to prior approaches.more » « less
- 
            In this work, we propose a new Gaussian process (GP) regression framework that enforces the physical constraints in a probabilistic manner. Specifically, we focus on inequality and monotonicity constraints. This GP model is trained by the quantum-inspired Hamiltonian Monte Carlo (QHMC) algorithm, which is an efficient way to sample from a broad class of distributions by allowing a particle to have a random mass matrix with a probability distribution. Integrating the QHMC into the inequality and monotonicity constrained GP regression in the probabilistic sense, our approach enhances the accuracy and reduces the variance in the resulting GP model. Additionally, the probabilistic aspect of the method leads to reduced computational expenses and execution time. Further, we present an adaptive learning algorithm that guides the selection of constraint locations. The accuracy and efficiency of the method are demonstrated in estimating the hyperparameter of high-dimensional GP models under noisy conditions, reconstructing the sparsely observed state of a steady state heat transport problem, and learning a conservative tracer distribution from sparse tracer concentration measurements.more » « less
- 
            In this paper, we study the problem of distributed generalized stochastic Nash equilibrium seeking for robot systems over a connected undirected graph. We use the cost functions containing uncertainty to represent the system’s performance under varying conditions. To mitigate the challenges posed by this uncertainty, we employ the Tikhonov regularization scheme, which also helps us to relax the strongly monotone condition of the cost functions to the strictly monotone condition. We also consider the inequality constraints, which represent the feasible working space of robots. Additionally, auxiliary parameters are introduced in the control laws to facilitate seeing the variational generalized stochastic Nash equilibrium. The convergence of the proposed control laws is analyzed by using the operator splitting method. Finally, we demonstrate the effectiveness of the proposed algorithm through an example involving multiple robots connected through a communication network.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    