skip to main content

This content will become publicly available on December 1, 2024

Title: Direction Estimation in 3D Outdoor Air–Air Wireless Channels through Machine Learning
UAVs need to communicate along three dimensions (3D) with other aerial vehicles, ranging from above to below, and often need to connect to ground stations. However, wireless transmission in 3D space significantly dissipates power, often hindering the range required for these types of links. Directional transmission is one way to efficiently use available wireless channels to achieve the desired range. While multiple-input multiple-output (MIMO) systems can digitally steer the beam through channel matrix manipulation without needing directional awareness, the power resources required for operating multiple radios on a UAV are often logistically challenging. An alternative approach to streamline resources is the use of phased arrays to achieve directionality in the analog domain, but this requires beam sweeping and results in search-time delay. The complexity and search time can increase with the dynamic mobility pattern of the UAVs in aerial networks. However, if the direction of the receiver is known at the transmitter, the search time can be significantly reduced. In this work, multi-antenna channels between two UAVs in A2A links are analyzed, and based on these findings, an efficient machine learning-based method for estimating the direction of a transmitting node using channel estimates of 4 antennas (2 × 2 MIMO) is proposed. The performance of the proposed method is validated and verified through in-field drone-to-drone measurements. Findings indicate that the proposed method can estimate the direction of the transmitter in the A2A link with 86% accuracy. Further, the proposed direction estimation method is deployable for UAV-based massive MIMO systems to select the directional beam without the need to sweep or search for optimal communication performance.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the next wave of swarm-based applications, unmanned aerial vehicles (UAVs) need to communicate with peer drones in any direction of a three-dimensional (3D) space. On a given drone and across drones, various antenna positions and orientations are possible. We know that, in free space, high levels of signal loss are expected if the transmitting and receiving antennas are cross polarized. However, increasing the reflective and scattering objects in the channel between a transmitter and receiver can cause the received polarization to become completely independent from the transmitted polarization, making the cross-polarization of antennas insignificant. Usually, these effects are studied in the context of cellular and terrestrial networks and have not been analyzed when those objects are the actual bodies of the communicating drones that can take different relative directions or move at various elevations. In this work, we show that the body of the drone can affect the received power across various antenna orientations and positions and act as a local scatterer that increases channel depolarization, reducing the cross-polarization discrimination (XPD). To investigate these effects, we perform experimentation that is staged in terms of complexity from a controlled environment of an anechoic chamber with and without drone bodies to in-field environments where drone-mounted antennas are in-flight with various orientations and relative positions with the following outcomes: (i.) drone relative direction can significantly impact the XPD values, (ii.) elevation angle is a critical factor in 3D link performance, (iii.) antenna spacing requirements are altered for co-located cross-polarized antennas, and (iv.) cross-polarized antenna setups more than double spectral efficiency. Our results can serve as a guide for accurately simulating and modeling UAV networks and drone swarms. 
    more » « less
  2. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) often lack the size, weight, and power to support large antenna arrays or a large number of radio chains. Despite such limitations, emerging applications that require the use of swarms, where UAVs form a pattern and coordinate towards a common goal, must have the capability to transmit in any direction in three-dimensional (3D) space from moment to moment. In this work, we design a measurement study to evaluate the role of antenna polarization diversity on UAV systems communicating in arbitrary 3D space. To do so, we construct flight patterns where one transmitting UAV is hovering at a high altitude (80 m) and a receiving UAV hovers at 114 different positions that span 3D space at a radial distance of approximately 20 m along equally-spaced elevation and azimuth angles. To understand the role of diverse antenna polarizations, both UAVs have a horizontally-mounted antenna and a vertically-mounted antenna-each attached to a dedicated radio chain-creating four wireless channels. With this measurement campaign, we seek to understand how to optimally select an antenna orientation and quantify the gains in such selections. 
    more » « less
  3. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate. 
    more » « less
  4. The Unmanned aerial vehicles (UAVs) sector is fast-expanding. Protection of real-time UAV applications against malicious attacks has become an urgent problem that needs to be solved. Denial-of-service (DoS) attack aims to exhaust system resources and cause important tasks to miss deadlines. DoS attack may be one of the common problems of UAV systems, due to its simple implementation. In this paper, we present a software framework that offers DoS attack-resilient control for real-time UAV systems using containers: Container Drone. The framework provides defense mechanisms for three critical system resources: CPU, memory, and communication channel. We restrict the attacker's access to the CPU core set and utilization. Memory bandwidth throttling limits the attacker's memory usage. By simulating sensors and drivers in the container, a security monitor constantly checks DoS attacks over communication channels. Upon the detection of a security rule violation, the framework switches to the safety controller to mitigate the attack. We implemented a prototype quadcopter with commercially off-the-shelf (COTS) hardware and open-source software. Our experimental results demonstrated the effectiveness of the proposed framework defending against various DoS attacks. 
    more » « less
  5. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less