skip to main content


Title: Trade less Accuracy for Fairness and Trade-off Explanation for GNN
Graphs are widely found in social network analysis and e-commerce, where Graph Neural Networks (GNNs) are the state-of the-art model. GNNs can be biased due to sensitive attributes and network topology. With existing work that learns a fair node representation or adjacency matrix, achieving a strong guarantee of group fairness while preserving prediction accuracy is still challenging, with the fairness-accuracy trade-off remaining obscure to human decision-makers. We first define and analyze a novel upper bound of group fairness to optimize the adjacency matrix for fairness without significantly h arming prediction accuracy. To understand the nuance of fairness-accuracy tradeoff, we further propose macroscopic and microscopic explanation methods to reveal the trade-offs and the space that one can exploit. The macroscopic explanation method is based on stratified sampling and linear programming to deterministically explain the dynamics of the group fairness and prediction accuracy. Driving down to the microscopic level, we propose a path-based explanation that reveals how network topology leads to the tradeoff. On seven graph datasets, we demonstrate the novel upper bound can achieve more efficient fairness-accuracy trade-offs and the intuitiveness of the explanation methods can clearly pinpoint where the trade-off is improved.  more » « less
Award ID(s):
2008155
NSF-PAR ID:
10477853
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE International Conference on Big Data (Big Data)
ISBN:
978-1-6654-8045-1
Page Range / eLocation ID:
4681 to 4690
Format(s):
Medium: X
Location:
Osaka, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Spamming reviews are prevalent in review systems to manipulate seller reputation and mislead customers. Spam detectors based on graph neural networks (GNN) exploit representation learning and graph patterns to achieve state-of-the-art detection accuracy. The detection can influence a large number of real-world entities and it is ethical to treat different groups of entities as equally as possible. However, due to skewed distributions of the graphs, GNN can fail to meet diverse fairness criteria designed for different parties. We formulate linear systems of the input features and the adjacency matrix of the review graphs for the certification of multiple fairness criteria. When the criteria are competing, we relax the certification and design a multi-objective optimization (MOO) algorithm to explore multiple efficient trade-offs, so that no objective can be improved without harming another objective. We prove that the algorithm converges to a Pareto efficient solution using duality and the implicit function theorem. Since there can be exponentially many trade-offs of the criteria, we propose a data-driven stochastic search algorithm to approximate Pareto fronts consisting of multiple efficient trade-offs. Experimentally, we show that the algorithms converge to solutions that dominate baselines based on fairness regularization and adversarial training. 
    more » « less
  2. Spamming reviews are prevalent in review systems to manipulate seller reputation and mislead customers. Spam detectors based on graph neural networks (GNN) exploit representation learning and graph patterns to achieve state-of-the-art detection accuracy. The detection can influence a large number of real-world entities and it is ethical to treat different groups of entities as equally as possible. However, due to skewed distributions of the graphs, GNN can fail to meet diverse fairness criteria designed for different parties. We formulate linear systems of the input features and the adjacency matrix of the review graphs for the certification of multiple fairness criteria. When the criteria are competing, we relax the certification and design a multi-objective optimization (MOO) algorithm to explore multiple efficient trade-offs, so that no objective can be improved without harming another objective. We prove that the algorithm converges to a Pareto efficient solution using duality and the implicit function theorem. Since there can be exponentially many trade-offs of the criteria, we propose a data-driven stochastic search algorithm to approximate Pareto fronts consisting of multiple efficient trade-offs. Experimentally, we show that the algorithms converge to solutions that dominate baselines based on fairness regularization and adversarial training. 
    more » « less
  3. As machine learning becomes more widely adopted across domains, it is critical that researchers and ML engineers think about the inherent biases in the data that may be perpetuated by the model. Recently, many studies have shown that such biases are also imbibed in Graph Neural Network (GNN) models if the input graph is biased, potentially to the disadvantage of underserved and underrepresented communities. In this work, we aim to mitigate the bias learned by GNNs by jointly optimizing two different loss functions: one for the task of link prediction and one for the task of demographic parity. We further implement three different techniques inspired by graph modification approaches: the Global Fairness Optimization (GFO), Constrained Fairness Optimization (CFO), and Fair Edge Weighting (FEW) models. These techniques mimic the effects of changing underlying graph structures within the GNN and offer a greater degree of interpretability over more integrated neural network methods. Our proposed models emulate microscopic or macroscopic edits to the input graph while training GNNs and learn node embeddings that are both accurate and fair under the context of link recommendations. We demonstrate the effectiveness of our approach on four real world datasets and show that we can improve the recommendation fairness by several factors at negligible cost to link prediction accuracy. 
    more » « less
  4. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.

     
    more » « less
  5. Link prediction has been widely applied in social network analysis. Despite its importance, link prediction algorithms can be biased by disfavoring the links between individuals in particular demographic groups. In this paper, we study one particular type of bias, namely, the bias in predicting inter-group links (i.e., links across different demographic groups). First, we formalize the definition of bias in link prediction by providing quantitative measurements of accuracy disparity, which measures the difference in prediction accuracy of inter-group and intra-group links. Second, we unveil the existence of bias in six existing state-of-the-art link prediction algorithms through extensive empirical studies over real world datasets. Third, we identify the imbalanced density across intra-group and inter-group links in training graphs as one of the underlying causes of bias in link prediction. Based on the identified cause, fourth, we design a pre-processing bias mitigation method named FairLP to modify the training graph, aiming to balance the distribution of intra-group and inter-group links while preserving the network characteristics of the graph. FairLP is model-agnostic and thus is compatible with any existing link prediction algorithm. Our experimental results on real-world social network graphs demonstrate that FairLP achieves better trade-off between fairness and prediction accuracy than the existing fairness-enhancing link prediction methods. 
    more » « less