skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A phase transition-induced photocathodic p-CuFeO 2 nanocolumnar film by reactive ballistic deposition
Vertical nanocolumnar Cu–Fe–O electrodes synthesized by the reactive ballistic deposition technique followed by heat treatment in an Ar atmosphere undergo a switch for conductivity at elevated temperatures.  more » « less
Award ID(s):
2102307
PAR ID:
10477913
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
46
Issue:
3
ISSN:
1144-0546
Page Range / eLocation ID:
1238 to 1245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    HN(CH 2 CH 2 PR 2 ) 2 -ligated copper borohydride complexes, ( R PN H P)Cu(BH 4 ) (R = i Pr, Cy, t Bu), which can be prepared from ( R PN H P)CuBr and NaBH 4 , are capable of catalyzing the hydrogenation of aldehydes in an alcoholic solvent. More active hydrogenation catalysts are ( R PN H P)CuBr mixed with KO t Bu, allowing various aldehydes and ketones to be efficiently reduced to alcohols except those bearing a nitro, N -unprotected pyrrole, pyridine, or an ester group, or those prone to aldol condensation ( e.g. , 1-heptanal). Modifying the catalyst structure by replacing the NH group in ( i Pr PN H P)CuBr with an NMe group results in an inferior catalyst but preserves some catalytic activity. The hexanuclear copper hydride cluster, ( i Pr PN H P) 3 Cu 6 H 6 , is also competent in catalyzing the hydrogenation of aldehydes such as benzaldehyde and N -methyl-2-pyrrolecarboxaldehyde, albeit accompanied by decomposition pathways. The catalytic performance can be enhanced through the addition of a strong base or i Pr PN H P. The three catalytic systems likely share the same catalytically active species, which is proposed to be a mononuclear copper hydride ( R PN H P)CuH with the NH group bound to copper. 
    more » « less
  2. Alcoholysis of (C5H4SiMe)3Ln results in bimetallic complexes with unexpected decreases in Ln⋯Ln distances as bridging alkoxides become bulkier. These complexes were characterized by DOSY NMR, CV, DPV, and a LaIIspecies was observed by EPR. 
    more » « less
  3. Lanthanoid oxysulphides exhibit great versatility in their chemical compositions which allow for their optoelectronic properties to be tuned by the relative amounts of oxygen and sulphur present in their crystal structures. 
    more » « less
  4. Floating zone growth of a cm-sized solid-state electrolyte single crystal, identification of two distinct Li sites with Laue neutron diffraction, and Li-ion conductivity and migration energy determination by EIS and dielectric measurements. 
    more » « less
  5. Abstract Three multi‐shell metalloid gold clusters of the composition Au32(R3P)12Cl8(R=Et,nPr,nBu) were synthesized in a straightforward fashion by reducing R3PAuCl with NaBH4in ethanol. The Au32core comprises two shells, with the inner one constituting a tilted icosahedron and the outer one showing a distorted dodecahedral arrangement. The outer shell is completed by eight chloride atoms and twelve R3P groups. The inner icosahedron shows bond lengths typical for elemental gold while the distances of the gold atoms in the dodecahedral arrangement are in the region of aurophilic interactions. Quantum‐chemical calculations illustrate that the Jahn–Teller effect observed within the cluster core can be attributed to the electronic shell filling. The easily reproducible synthesis, good solubility, and high yields of these clusters render them perfect starting points for further research. 
    more » « less