skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects
A decades-long affair Decadal climate variability and change affects nearly every aspect of our world, including weather, agriculture, ecosystems, and the economy. Predicting its expression is thus of critical importance on multiple fronts. Poweret al. review what is known about tropical Pacific decadal climate variability and change, the degree to which it can be simulated and predicted, and how we might improve our understanding of it. More accurate projections will require longer and more detailed instrumental and paleoclimate records, improved climate models, and better data assimilation methods. —HJS  more » « less
Award ID(s):
1756883
PAR ID:
10477921
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6563
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ocean removes man-made (anthropogenic) carbon from the atmosphere and thereby mitigates climate change. Observations from global hydrographic surveys reveal the spatial and temporal evolution of the ocean inventory of anthropogenic carbon and suggest substantial decadal variability in historical storage rates. Here, we use a 100-member ensemble of an Earth system model to investigate the influence of external forcing and internal climate variability on historical changes in ocean anthropogenic carbon storage over 1994 to 2014. Our findings reveal that the externally forced, decadal changes in storage are largest in the Atlantic (2–4 mmol m−3decade−1) and positive nearly everywhere. Internal climate variability modulates regional ocean anthropogenic carbon storage trends by up to 10 mmol m−3decade−1. The influence of internal climate variability on decadal storage changes is most prominent at depths of ∼300 m and at the edges of the subtropical gyres. Internal variability in anthropogenic carbon in the extratropics has high spectral power on decadal to multi-decadal timescales, indicating that the approximately decadal repetitions of hydrographic surveys may produce storage change estimates that are heavily influenced by internal climate variability. 
    more » « less
  2. Abstract Natural decadal climate variability in the Pacific, such as the Pacific decadal oscillation (PDO) or the interdecadal Pacific oscillation (IPO), plays a powerful role in evolving global hydroclimate on decadal time scales. Recent generations of general circulation models (GCMs) have been found to simulate the spatial pattern of the PDO well but struggle to capture temporal variability on decadal time scales. To use GCMs to project future climate, we must understand the degree to which climate models can successfully reproduce historical PDO and IPO spatial patterns, temporal behavior, and influence on hydroclimate. We calculate PDO and IPO spatial patterns and time series using 16 models within the CMIP6 archive, all with large (n≥ 10) ensembles, and compare them to observations in an integrated assessment of models’ ability to represent Pacific decadal variability spatiotemporally. All models underestimate decadal variability in the PDO and IPO and have a westward bias in their PDO and IPO North Pacific SST anomalies. We also evaluate hydroclimate teleconnections of the PDO and IPO in models using PDO- and IPO-associated precipitation, circulation, low-cloud, and vapor pressure deficit anomalies. We show that models’ underpowered decadal variability in the Pacific is consistent with their inability to reproduce large-amplitude decadal swings in precipitation in southwestern North America and that models are virtually unable to produce a 30-yr precipitation trend in the southwest of the magnitude observed from 1982 to 2011. We emphasize the importance of model fidelity in simulating Pacific decadal variability for accurate representation of decadal-scale hydroclimate change in Pacific-teleconnected land regions. 
    more » « less
  3. Abstract Identifying the mechanisms behind the Atlantic Multidecadal Variability (AMV) is crucial for understanding and predicting decadal climate change. However, what is behind the AMV is still debated. A key issue is the relative role of internal variability (IV) and external forcing in causing the AMV. By analyzing observations and a large number of climate model simulations, here we show that IV and volcanic and anthropogenic aerosols all influenced the AMV over the last ~150 years. Although the AMV since 1870 resulted mainly from IV, decadal variations in aerosol forcing happen to be in phase with the IV‐induced AMV and thus enlarged its amplitudes, especially since the late 1920s. Our results support the notion that the AMV resulted from both internal climate variability and decadal changes in aerosols but are inconsistent with the conclusion that the recent AMV is mainly a direct response to external forcing. 
    more » « less
  4. Abstract Future changes in the Beaufort Gyre liquid freshwater content (LFWC) are important for the local and global climate. However, traditional climate models cannot resolve oceanic and atmospheric eddies that are critical to the LFWC variations. In this study, we investigate physical processes controlling Beaufort Gyre LFWC changes in an eddy‐resolving simulation. The model simulation largely reproduces the observed LFWC changes, and projects a long‐term LFWC increase with an intensification of its decadal variability during the 21st century. Freshwater budget analysis suggests that future LFWC changes are strongly influenced by sea ice melt. The conversion from solid to liquid phase provides more liquid freshwater into the ocean. Meanwhile, sea ice loss enhances the efficiency of air‐sea momentum transfer, leading to increased wind‐driven freshwater convergence and its variability. The decadal variation of the LFWC will regulate Arctic freshwater exports and coincident with an O (0.5 Sv) change in the meridional overturning circulation. 
    more » « less
  5. Abstract The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century. 
    more » « less