Abstract The investigation of upper mantle structure beneath the US has revealed a growing diversity of discontinuities within, across, and underneath the sub‐continental lithosphere. As the complexity and variability of these detected discontinuities increase—for example, velocity increase/decrease, number of layers and depth—it is hard to judge which constraints are robust and which explanatory models generalize to the largest set of constraints. Much work has been done to image discontinuities of interest using S‐waves that convert to P‐waves (or top‐side reflected SS waves). A higher resolution method using P‐to‐S scattered waves is preferred but often obscured by multiply reflected waves trapped in a shallower layer, limiting the visibility of deeper boundaries. Here, we address the interference problem and re‐evaluate upper mantle stratification using filtered P‐to‐S receiver functions (Ps‐RFs) interpreted using unsupervised machine‐learning. Robust insight into upper mantle layering is facilitated with CRISP‐RF: Clean Receiver‐Function Imaging using Sparse Radon Filters. Subsequent sequencing and clustering organizes the polarity‐filtered Ps‐RFs into distinct depth‐based clusters. We find three types of upper mantle stratification beneath the old and stable continental US: (a) intra‐lithosphere discontinuities (paired or single boundary), (b) transitional discontinuities (single boundary or with a top layer), and (c) sub‐lithosphere discontinuities. Our findings contribute a more nuanced understanding of mantle discontinuities, offering new perspectives on the nature of upper mantle layering beneath continents.
more »
« less
On the detection of upper mantle discontinuities with radon-transformed receiver functions (CRISP-RF)
SUMMARY Seismic interrogation of the upper mantle from the base of the crust to the top of the mantle transition zone has revealed discontinuities that are variable in space, depth, lateral extent, amplitude and lack a unified explanation for their origin. Improved constraints on the detectability and properties of mantle discontinuities can be obtained with P-to-S receiver function (Ps-RF) where energy scatters from P to S as seismic waves propagate across discontinuities of interest. However, due to the interference of crustal multiples, uppermost mantle discontinuities are more commonly imaged with lower resolution S-to-P receiver function (Sp-RF). In this study, a new method called CRISP-RF (Clean Receiver-function Imaging using SParse Radon Filters) is proposed, which incorporates ideas from compressive sensing and model-based image reconstruction. The central idea involves applying a sparse Radon transform to effectively decompose the Ps-RF into its underlying wavefield contributions, that is direct conversions, multiples, and noise, based on the phase moveout and coherence. A masking filter is then designed and applied to create a multiple-free and denoised Ps-RF. We demonstrate, using synthetic experiment, that our implementation of the Radon transform using a sparsity-promoting regularization outperforms the conventional least-squares methods and can effectively isolate direct Ps conversions. We further apply the CRISP-RF workflow on real data, including single station data on cratons, common-conversion-point stack at continental margins and seismic data from ocean islands. The application of CRISP-RF to global data sets will advance our understanding of the enigmatic origins of the upper mantle discontinuities like the ubiquitous mid-lithospheric discontinuity and the elusive X-discontinuity.
more »
« less
- Award ID(s):
- 1818654
- PAR ID:
- 10477926
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 236
- Issue:
- 2
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 748-763
- Size(s):
- p. 748-763
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The receiver function (RF) is a widely used crustal imaging technique. In principle, it assumes relatively noise-free traces that can be used to target receiver-side structures following source deconvolution. In practice, however, mode conversions and reflections may be severely degraded by noisy conditions, hampering robust estimation of crustal parameters. In this study, we use a sparsity-promoting Radon transform to decompose the observed RF traces into their wavefield contributions, that is, direct conversions, multiples, and incoherent noise. By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF traces with only Moho conversions and reflections. We demonstrate, using a synthetic experiment and a real-data example from the Sierra Nevada, that our approach can effectively denoise the RFs and extract the underlying Moho signals. This greatly improves the robustness of crustal structure recovery as exemplified by subsequent H−κ stacking. We further demonstrate, using a station sitting on loose sediments in the Upper Mississippi embayment, that a combination of our approach and frequency-domain filtering can significantly improve crustal imaging in reverberant settings. In the presence of complex crustal structures, for example, dipping Moho, intracrustal layers, and crustal anisotropy, we recommend caution when applying our proposed approach due to the difficulty of interpreting a possibly more complicated Radon image. We expect that our technique will enable high-resolution crustal imaging and inspire more applications of Radon transforms in seismic signal processing.more » « less
-
Abstract Constraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, several causal mechanisms are possible to explain the intermittently observed X‐discontinuity (X) at 230–350 km depth: the coesite‐stishovite phase transition, the enstatite to clinoenstatite phase transition, and/or carbonated silicate melting, all requiring a local enrichment of basalt. Africa hosts a broad range of terranes, from Precambrian cores to Cenozoic hotspots with or without lowermost mantle origins. With the absence of subduction below the margins of the African plate for >0.5 Ga, Africa presents an ideal study locale to explore the origins of the X. Traditional receiver function (RF) approaches used to map seismic discontinuities, such as common conversion‐point stacking, ignore slowness information crucial for discriminating converted upper mantle phases from surface multiples. By manually assessing depth and slowness stacks for 1° radius overlapping bins, normalized vote mapping of RF stacks is used to robustly assess the spatial distribution of converted upper mantle phases. The X is mapped beneath Africa at 233–340 km depth, revealing patches of heterogeneity proximal to mantle upwellings in Afar, Canaries, Cape Verde, East Africa, Hoggar, and Réunion with further observations beneath Cameroon, Madagascar, and Morocco. There is a lack of an X beneath southern Africa and strikingly, the magmatic eastern rift branch of the southern East African Rift. With no relationships existing between depth and amplitudes of observed X and estimated mantle temperatures, multiple causal mechanisms are required across a range of continental geodynamic settings.more » « less
-
Abstract While the receiver function technique has been successfully applied to high‐resolution imaging of sharp discontinuities within and across the lithosphere, it suffers from severe limitations when applied to seafloor seismic recordings. This is because the water and sediment layer could strongly influence the receiver function traces, making detection and interpretation of crust and mantle layering difficult. This effect is often referred to as the singing phenomena in marine environments. We demonstrate, using analytical and synthetic modeling, that this singing effect can be reversed using a selective dereverberation filter tuned to match the elastic property of each layer. We apply the dereverberation filter to high‐quality earthquake records collected from the NoMelt seismic array deployed on normal, mature Pacific seafloor. An appropriate filter designed using the elastic properties of the underlying sediments, obtained from prior studies, greatly improves the detection of Ps conversions from the Moho (∼8.6 km) and from a sharp discontinuity (<∼5 km) across the lithosphere asthenosphere transition (∼72 km). Sensitivity tests show that the dereverberation filter is mostly sensitive to the two‐way travel time of the shear wave in sediment and is robust to seismic noise and small errors in the sediment properties. Our analysis suggests that selectively filtering out the sediment reverberations from ocean seismic data could make inferences on subsurface structure more robust. We expect that this study will enable high‐resolution receiver function imaging of the oceanic plate across the growing ocean bottom seismic arrays being deployed in the global oceans.more » « less
-
Abstract The goal of this study is to constrain the origins of layering in the seismic velocity structure within the cratonic mantle lithosphere (i.e. mid‐lithospheric discontinuities [MLDs]). For long‐lived stations in cratons worldwide, we calculated S‐to‐P converted phase receiver function stacks using time domain deconvolution and a k‐means algorithm to select robust, consistent receiver functions. Negative MLDs appear in only 50% of the receiver function stacks, indicating that negative MLDs are common but intermittent. The negative MLDs correspond to shear velocity drops of 1%–4%, which could be caused by layers of minerals created by metasomatism, although vertical layering in seismic anisotropy cannot be ruled out. In craton interiors, negative MLDs have a lower amplitude (<3% velocity drops) and can be explained by metasomatism of the original Archean mantle. Negative MLD amplitudes increase with decreasing upper mantle shear velocity (toward the outer margins of the cratons), but do not depend on the age of the craton. Thus, negative MLD amplitudes are not dominated by age‐related variations in the cratonic mantle composition, and, instead, are more strongly correlated with proximity to tectonic and metasomatic activity that occurred long after craton formation. Negative MLDs are less numerous among stations that have Paleoproterozoic and Archean thermotectonic ages, consistent with the view that shallow release of slab‐derived fluids during early “warm” subduction was less favorable for negative MLD formation. We also observe velocity gradients below 150 km at stations in craton boundaries and interiors, indicating the presence of seismic velocity changes at the cratonic lithosphere‐asthenosphere boundary and/or Lehmann discontinuity.more » « less
An official website of the United States government
