skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interfacial stabilization of aqueous two-phase systems: a review
Aqueous two-phase systems (ATPS) are useful in various applications, from purification and separation of biomolecules to wastewater treatment. While they have great utility on their own, there is great interest in discovering how their emulsions, comprising droplets of one aqueous phase dispersed in the other aqueous phase, might be stabilized to enhance their functionality and applications. There are several examples of these systems, but the two most common systems found in the literature are PEG–dextran and complex coacervate ATPS. In this Review, we discuss these systems, their utility, and many different approaches for stabilizing their water/water (w/w) emulsions. We highlight examples wherein interfacial stabilizers such as liposomes, polymers of diverse architectures, colloids of varied shapes and morpholo- gies, and even whole cells have been employed. These stabilization approaches for both PEG–dextran and complex coacervate ATPS are discussed. We conclude with a discussion of the applications of these ATPS and how they can benefit from the creation of corresponding w/w emulsions with stabilized droplets.  more » « less
Award ID(s):
2048285
PAR ID:
10478066
Author(s) / Creator(s):
; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Materials Advances
Volume:
4
Issue:
20
ISSN:
2633-5409
Page Range / eLocation ID:
4665 to 4678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self‐assembling bacterial microcompartment (BMC) shell proteins and liquid‐liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid‐liquid interfaces between either 1) the dextran‐rich droplets and PEG‐rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two‐phase system, or 2) the polypeptide‐rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically‐driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three‐phase system wherein coacervate droplets are contained within dextran‐rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three‐phase system by changing the polyelectrolyte charge ratio. The tens‐of‐micron scale BMC shell protein‐coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality. 
    more » « less
  2. A novel castor oil/water/ethanol Pickering emulsion, stabilized by magnetic nanoparticles (NPs), was developed to allow on-demand demulsification by an external magnetic field for the extraction of ethanol from aqueous solution using the castor oil. The emulsion was stabilized by Fe3O4-coated cellulose nanocrystals (CNC@Fe3O4) and lignin-coated Fe3O4 NPs (lignin@Fe3O4). The stability of the emulsions was investigated at various castor oil to ethanol-water ratios (50/50 and 70/30), various NP concentrations, and ethanol concentrations in the aqueous phase. The magnetically controlled demulsification ability of the emulsions was investigated by using a permanent magnet. The results showed that the 70/30 emulsions were more stable than the 50/50 emulsions for all the ethanol concentrations. Moreover, increasing the NP concentration increased the emulsion stability and hence, 1 w/v% NPs concentration provided the more stable systems. However, all the emulsions were successfully broken by the permanent magnet. Yet, the presence of ethanol improves the ability of the external magnetic field to demulsify these dispersions. Furthermore, the used hybrid NPs were recovered and recycled for three cycles. The recycled NPs were characterized with X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) indicating that they retained their saturation magnetization and crystalline structure, demonstrating their lack of degradation over multiple recycling cycles. This study facilitates the exploration of innovative two-phase Pickering emulsions comprising three distinct liquid components and their utilization in liquid-liquid extraction processes. 
    more » « less
  3. We report the effect of neutral macromolecular crowders poly(ethylene glycol) (PEG) (8 kDa) and Ficoll (70 kDa) on liquid–liquid phase separation in a polyuridylic acid (polyU)/spermine complex coacervate system. The addition of PEG decreased both the amount of spermine required for phase separation and the coacervation temperature ( T C ). We interpret these effects on phase behavior as arising due to excluded volume and preferential interactions on both the secondary structure/condensation of spermine-associated polyU molecules and on the association of soluble polyU/spermine polyelectrolyte complexes to form coacervate droplets. Examination of coacervates formed in the presence of fluorescently-labeled PEG or Ficoll crowders indicated that Ficoll is accumulated while PEG is excluded from the coacervate phase, which provides further insight into the differences in phase behavior. Crowding agents impact distribution of a biomolecular solute: partitioning of a fluorescently-labeled U15 RNA oligomer into the polyU/spermine coacervates was increased approximately two-fold by 20 wt% Ficoll 70 kDa and by more than two orders of magnitude by 20 wt% PEG 8 kDa. The volume of the coacervate phase decreased in the presence of crowder relative to a dilute buffer solution. These findings indicate that potential impacts of macromolecular crowding on phase behavior and solute partitioning should be considered in model systems for intracellular membraneless organelles. 
    more » « less
  4. Abstract Oil‐in‐water droplets stabilized with polymer zwitterions (PZWs) exhibit salt‐responsive aggregation–disaggregation behavior. Here, a method to shape these droplets is described, starting from their aggregated state, into supracolloidal fibers by simply extruding them into aqueous media. The effect of salt concentration, in both the initial emulsion and the aqueous medium, on the ability of the emulsions to form fibers is examined. After fiber formation, a transition from well‐defined macroscopic structures to noninteracting droplet dispersions can be triggered, simply by increasing the salt concentration of the aqueous environment. The interdroplet energy of adhesion and emulsion rheology correlate qualitatively with salt concentration and thus impact the ability of the emulsions to be shaped by extrusion. The interdroplet adhesion is dependent on both salt concentration and polymer composition, which allows tailoring of conditions to trigger fiber disaggregation. Finally, fibers with variable compositions along their length are prepared by sequential loading and extrusion of emulsions containing oil phases of differing densities. 
    more » « less
  5. Aqueous two-phase systems (ATPSs) have long been used for the facile and rapid extraction of biomolecules of interest. Selective partitioning of DNA is useful for nucleic acid purification and in the design of novel sensing technologies. This paper investigates the partitioning of a plasmid within a poorly understood ATPS comprising the polymers poly(ethylene glycol) (PEG) 35 kDa and Ficoll 400 kDa. The focus is placed on dissecting the compositional effects of the ATPS—that is, whether set concentrations of physiological ions or the polymers themselves can tune DNA phase preference and strength of partitioning. The work here uncovers the antagonistic effects of magnesium and ammonium ions, as well as the role that phase-forming polymer partitioning plays in plasmid enrichment. Testing the ions in conjunction with different ATPS formulations highlights the complexity of the system at hand, prompting the exploration of DNA’s conformational changes in response to polymer and salt presence. The work presented here offers multiple optimization parameters for downstream applications of PEG–Ficoll ATPSs, such as in vitro transcription/translation-based biosensing, in which performance is heavily dependent upon nucleic acid partitioning. 
    more » « less