skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses
Mobility disabilities are prominent in society with wide-ranging deficits, motivating modular, partial-assist, lower-limb exoskeletons for this heterogeneous population. This paper introduces the Modular Backdrivable Lower-limb Unloading Exoskeleton (M-BLUE), which implements high torque, low mechanical impedance actuators on commercial orthoses with sheet metal modifications to produce a variety of hip- and/or knee-assisting configurations. Benchtop system identification verifies the desirable backdrive properties of the actuator, and allows for torque prediction within 0.4 Nm. An able-bodied human subject experiment demonstrates that three unilateral configurations of M-BLUE (hip only, knee only, and hip-knee) with a simple gravity compensation controller can reduce muscle EMG readings in a lifting and lowering task relative to the bare condition. Reductions in mean muscular effort and peak muscle activation were seen across the primary squat musculature (excluding biceps femoris), demonstrating the potential to reduce fatigue leading to poor lifting posture. These promising results motivate applications of M-BLUE to additional populations, and the expansion of M-BLUE to bilateral and ankle configurations.  more » « less
Award ID(s):
1949869 1953908
PAR ID:
10317773
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
ISSN:
2377-3774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work aims to investigate the effects of knee extension assistance during squat lifting. We hypothesize that adding an external torque to the knee joint using a soft inflatable exosuit can potentially induce a reduction in the muscular effort that extends to the posterior chain muscles. A total of 8 healthy test participants are recruited and instructed to lift a weight equivalent to 10% of their bodyweight. The muscle activities of the left and right Vastus Lateralis, Biceps Femoris, Gluteus Maximus, Erector Spinae (Iliocostalis and Longissimus) and Multifidus muscle groups were studied for baseline, non-assisted, and assisted conditions. The majority of participants (6 out of 8) demonstrated consistent reduction in the muscular effort of at least one muscle group of the posterior chain. A maximum reduction of 55% in the average muscle activity of the Multifidus muscle group is observed in one participant. Different neuromuscular adaptation mechanisms were observed among subjects that ultimately led to a reduction in lower-limb or back muscles activity. The results reveal that assisting knee extension during a lifting task has significant effects on muscle activity with benefits that extend to the posterior chain muscles. This work provides early evidence that the soft inflatable knee exosuit can be used in material handling tasks to reduce muscle effort and prevent work-related injuries. 
    more » « less
  2. Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability. 
    more » « less
  3. Powered exoskeletons for gait rehabilitation and mobility assistance are currently available for the adult population and hold great promise for children with mobility limiting conditions. Described here is the development and key features of a modular, lightweight and customizable powered exoskeleton for assist-as-needed overground walking and gait rehabilitation. The pediatric lower-extremity gait system (PLEGS) exoskeleton contains bilaterally active hip, knee and ankle joints and assist-as-needed shared control for young children with lower-limb disabilities such as those present in the Cerebral Palsy, Spina Bifida and Spinal Cord Injured populations. The system is comprised of six joint control modules, one at each hip, knee and ankle joint. The joint control module, features an actuator and motor driver, microcontroller, torque sensor to enable assist-as-needed control, inertial measurement unit and system monitoring sensors. Bench-testing results for the proposed joint control module are also presented and discussed. 
    more » « less
  4. Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies. 
    more » « less
  5. Robot assisted gait retraining is an increasingly common method for supporting restoration of walking function after neurological injury. Gait speed, an indicator of walking function, is correlated with propulsive force, a measure modulated by the posture of the trailing limb at push-off. With the ultimate goal of improving efficacy of robot assisted gait retraining, we sought to directly target gait propulsion, by exposing subjects to pulses of joint torque applied at the hip and knee joints to modulate push-off posture. In this work, we utilized a robotic exoskeleton to apply pulses of torque to the hip and knee joints, during individual strides, of 16 healthy control subjects, and quantified the effects of this intervention on hip extension and propulsive impulse during and after application of these pulses. We observed significant effects in the outcome measures primarily at the stride of pulse application and generally no after effects in the following strides. Specifically, when pulses were applied at late stance, we observed a significant increase in propulsive impulse when knee and/or hip flexion pulses were applied and a significant increase in hip extension angle when hip extension torque pulses were applied. When pulses were applied at early stance, we observed a significant increase in propulsive impulse associated with hip extension torque. 
    more » « less