The lithium–sulfur (Li–S) battery is a promising candidate for next‐generation high‐density energy storage devices because of its ultrahigh theoretical energy density and the natural abundance of sulfur. However, the practical performance of the sulfur cathode is plagued by fast capacity decay and poor cycle life, both of which can be attributed to the intrinsic dissolution/shuttling of lithium polysulfides. Here, a new built‐in magnetic field–enhanced polysulfide trapping mechanism is discovered by introducing ferromagnetic iron/iron carbide (Fe/Fe3C) nanoparticles with a graphene shell (Fe/Fe3C/graphene) onto a flexible activated cotton textile (ACT) fiber to prepare the ACT@Fe/Fe3C/graphene sulfur host. The novel trapping mechanism is demonstrated by significant differences in the diffusion behavior of polysulfides in a custom‐designed liquid cell compared to a pure ACT/S cathode. Furthermore, a cell assembled using the ACT@Fe/Fe3C/S cathode exhibits a high initial discharge capacity of ≈764 mAh g−1, excellent rate performance, and a remarkably long lifespan of 600 cycles using ACT@Fe/Fe3C/S (whereas only 100 cycles can be achieved using pure ACT/S). The new magnetic field–enhanced trapping mechanism provides not only novel insight but unveils new possibilities for mitigating the “shuttle effect” of polysulfides thereby promoting the practical applications of Li–S batteries.
This content will become publicly available on December 1, 2024
Lithium dendrite‐induced short circuits and material loss are two major obstacles to the commercialization of lithium–sulfur (Li−S) batteries. Here, a nanocarbon composite consisting of cotton‐derived Fe3C‐encapsulated multiwalled carbon nanotubes (Fe3C‐MWCNTs) and graphene effectively traps polysulfides to suppress lithium dendrite growth is reported. Machine learning combined with molecular dynamics (MD) simulations unveils a new polysulfide‐induced lithium dendrite formation mechanism: the migration of polysulfides away from the anode drags out lithium protrusions through localized lattice distortion of the lithium anode and traps lithium ions in the surrounding electrolyte, leading to lithium dendrite formation. The Li−S battery, constructed using the composite of cotton‐derived Fe3C‐MWCNTs and graphene that serves as both the sulfur host and the anode interlayer, exhibits exceptional cycling stability, impressive capacity retention, and effective mitigation of lithium dendrite formation. The findings offer valuable strategies to prevent lithium dendrite formation and enhance understanding of lithium dendrite growth in Li−S batteries.
more » « less- NSF-PAR ID:
- 10478165
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Despite the potential to become the next‐generation energy storage technology, practical lithium–sulfur (Li–S) batteries are still plagued by the poor cyclability of the lithium‐metal anode and sluggish conversion kinetics of S species. In this study, lithium tritelluride (LiTe3), synthesized with a simple one‐step process, is introduced as a novel electrolyte additive for Li–S batteries. LiTe3quickly reacts with lithium polysulfides and functions as a redox mediator to greatly improve the cathode kinetics and the utilization of active materials in the cathode. Moreover, the formation of a Li2TeS3/Li2Te‐enriched interphase layer on the anode surface enhances ionic transport and stabilizes Li deposition. By regulating the chemistry on both the anode and cathode sides, this additive enables a stable operation of anode‐free Li–S batteries with only 0.1
m concentration in conventional ether‐based electrolytes. The cell with the LiTe3additive retains 71% of the initial capacity after 100 cycles, while the control cell retains only 23%. More importantly, with high utilization of Te, the additive enables significantly better cyclability of anode‐free pouch full‐cells under lean electrolyte conditions. -
Abstract The development of practical lithium–sulfur (Li–S) batteries with prolonged cycle life and high Coulombic efficiency is limited by both parasitic reactions from dissolved polysulfides and mossy lithium deposition. To address these challenges, here lithium trithiocarbonate (Li2CS3)‐coated lithium sulfide (Li2S) is employed as a dual‐function cathode material to improve the cycling performance of Li–S batteries. Interestingly, at the cathode, Li2CS3forms an oligomer‐structured layer on the surface to suppress polysulfide shuttle. The presence of Li2CS3alters the conventional sulfur reaction pathway, which is supported by material characterization and density functional theory calculation. At the anode, a stable in situ solid electrolyte interphase layer with a lower Li‐ion diffusion barrier is formed on the Li‐metal surface to engender enhanced lithium plating/stripping performance upon cycling. Consequently, the obtained anode‐free full cells with Li2CS3exhibit a superior capacity retention of 51% over 125 cycles, whereas conventional Li2S cells retain only 26%. This study demonstrates that Li2CS3inclusion is an efficient strategy for designing high‐energy‐density Li–S batteries with extended cycle life.
-
Abstract Although the reversible and inexpensive energy storage characteristics of the lithium–sulfur (Li‐S) battery have made it a promising candidate for electrical energy storage, the dendrite growth (anode) and shuttle effect (cathode) hinder its practical application. Here, it is shown that new electrolytes for Li‐S batteries promote the simultaneous formation of bilateral solid electrolyte interfaces on the sulfur‐host cathode and lithium anode, thus effectively suppressing the shuttle effect and dendrite growth. These high‐capacity Li‐S batteries with new electrolytes exhibit a long‐term cycling stability, ultrafast‐charge/slow‐discharge rates, super‐low self‐discharge performance, and a capacity retention of 94.9% even after a 130 d long storage. Importantly, the long cycle stability of these industrial grade high‐capacity Li‐S pouch cells with new electrolytes will provide the basis for creating robust energy dense Li‐S batteries with an extensive life cycle.
-
Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.more » « less