To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br−.6Li NMR corroborates swift Li+migration between PS43−and Br−, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Br−incorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs.
The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−
- Award ID(s):
- 1847038
- PAR ID:
- 10478185
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Br−introduction and Li+deficiency, is explored. The optimized Li3‐3
y Ho1+y Cl6‐x Brx achieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Br−introduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3y Ho1+y Cl6‐x Brx also demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries. -
Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−
x Brx (0 ≤x ≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. -
Abstract Solid‐state electrolytes (SEs) with high anodic (oxidation) stability are essential for achieving all‐solid‐state Li‐ion batteries (ASSLIBs) operating at high voltages. Until now, halide‐based SEs have been one of the most promising candidates due to their compatibility with cathodes and high ionic conductivity. However, the developed chloride and bromide SEs still show limited electrochemical stability that is inadequate for ultrahigh voltage operations. Herein, this challenge is addressed by designing a dual‐halogen Li‐ion conductor: Li3InCl4.8F1.2. F is demonstrated to selectively occupy a specific lattice site in a solid superionic conductor (Li3InCl6) to form a new dual‐halogen solid electrolyte (DHSE). With the incorporation of F, the Li3InCl4.8F1.2DHSE becomes dense and maintains a room‐temperature ionic conductivity over 10−4S cm−1. Moreover, the Li3InCl4.8F1.2DHSE exhibits a practical anodic limit over 6 V (vs Li/Li+), which can enable high‐voltage ASSLIBs with decent cycling. Spectroscopic, computational, and electrochemical characterizations are combined to identify a rich F‐containing passivating cathode‐electrolyte interface (CEI) generated in situ, thus expanding the electrochemical window of Li3InCl4.8F1.2DHSE and preventing the detrimental interfacial reactions at the cathode. This work provides a new design strategy for the fast Li‐ion conductors with high oxidation stability and shows great potential to high‐voltage ASSLIBs.
-
Abstract In this report, a facile wet chemical method using acetonitrile combined with thermal annealing was used to prepare Li2S‐P2S5(LPS) based glass‐ceramic electrolytes with (1 wt%, 3 wt%, and 5 wt% Ce2S3) and without Ce2S3doping. The crystal structure, ionic conductivity, and chemical stability of Li7P3S11glass‐ceramic electrolytes were examined at varying temperatures (250–350°C). The results indicated that the highest ionic conductivity of 3.15 × 10−4S cm−1for pure Li7P3S11was observed at a temperature of 325°C. By incorporating 1 wt% Ce2S3and subjecting it to a heat treatment at 250°C, the glass ceramic electrolyte attained a remarkable ionic conductivity of 7.7 × 10−4(S cm−1) at 25°C. Furthermore, it exhibited a stable and extensive electrochemical potential range, reaching up to 5 volts when compared to the Li/Li+reference electrode. By tuning the glass transition and crystallization temperature, cerium doping seems to make Li7P3S11more chemically stable, compared to its original 70Li2S‐30P2S5counterpart. According to Raman and X‐ray photoelectron spectroscopy analyses, cerium doping inhibits the decomposition of highly conductive P2S74‐(pyro‐thiophosphate) to PS43−and P2S64−. Doped LPS has a greater crystallinity and more uniform microstructure than pure LPS, according to XRD, Raman spectroscopy, and scanning electron microscopy analysis. Consequently, Li7P2.9Ce0.1S11electrolyte shows great potential as a solid‐state electrolyte for constructing high‐performance sulfide‐based all‐solid‐state batteries.